

APPRENTISSAGE PROFOND POUR LA DÉTECTION DE CHANGEMENTS DANS DES NUAGES DE POINTS 3D

(WHEN DEEP LEARNING MEETS POINT CLOUDS AND CHANGE DETECTION)
Sébastien Lefèvre

ORASIS 2025, Le Croisic, 11 Juin 2025

IRISA, University of South Brittany, Vannes, France – sebastien.lefevre@irisa.fr

A BIT ABOUT ME

Full Professor at University of South Brittany since 2010: www.univ-ubs.fr Adjunct Professor at UiT - The Arctic University of Norway since 2023 Visiting Professor at ESA – Phi-lab since 2025

Founder and former head of OBELIX group at IRISA: www.irisa.fr/obelix (25 researchers on AI4EO)

Chair of the GeoData Science track EMJM Copernicus Master in Digital Earth: www.master-cde.eu

- Chair of the next AI4EO symposium (Rennes, September 2025): ai4eo2025.irisa.fr
- Looking for 2 new PhD students Explainable multimodal AI for assessing dynamic vulnerabilities from geospatial data Deep learning change detection from heterogeneous multitemporal remote sensing data

OBELIX GROUP

http://www-obelix.irisa.fr/

Focus on AI for EO

Founded 2013, ≈ 25 members (4 Prof, 7 Assoc.Prof, 5 Postdocs, 10 PhD, and regular visiting researchers... you're welcome!)

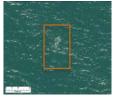
> 300 publications, 25 projects, 3 M€ contracts

OBELIX

Scientific challenges

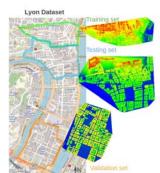
Earth and environment observations

- Multiple sensors (satellites, drones, etc.)
- Multiple nature of data (Multi or hyperspectral, LiDAR, SAR, temporal, etc.)
- Multiple settings of acquisition (ground or from above, atmospheric conditions)
- Tons of acquisition (large scale)
- Few labels, few annotations, sometimes available in multiple forms (vectorized, rasterized, point clouds)
- Uncertain, incomplete and noisy most of the time



Object detection

mapping



Lidar data

OBELIX

A large playfield for many machine learning problems....

Handle the specific nature of data in the learning process

 domain adaptation, data imputation, robust learning with label noise, few-shot or multi-task learning (mostly in a deep learning context)

Exploit structure in the data

 Either by extracting specifically from the data or exploiting userknowledge

Develop generative modeling for earth observation

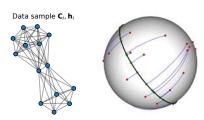
 transfer across modalities (e.g. multi-modal image fusion), superresolution, or inverse reconstruction problem with deep priors

Physics-driven Machine learning

 Integrate physics priors in predictions and exploit physics in explaining dynamics in neural nets

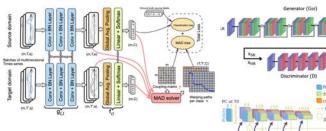
High performance computing

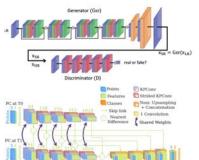
- Tackle large scale computing problems (energy efficiency) by e.g. quantization of neural nets.
- Quantum computing (prospective)

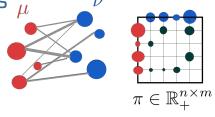


OBELIX

... that require many novel learning tools

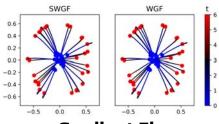




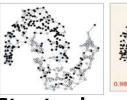


$$\mathcal{T}_c(\boldsymbol{\mu}, \boldsymbol{\nu}) = \inf_{\pi \in \Pi(\boldsymbol{\mu}, \boldsymbol{\nu})} \int_{\mathcal{X} \times \mathcal{Y}} c(x, y) d\pi(x, y)$$

Optimal Transport

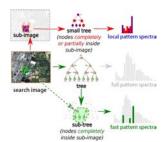


Gradient Flows



Structural regularization

Deep Learning



Morphological hierarchies

Publication Communities

Machine Learning (Theoretical focus)
NeurIPS, ICML, ICLR, AISTATS, JMLR

Computer vision

ICCV, CVPR, ECCV, ACCV, TPAMI Remote Sensing (Applied focus) IEEE IGARSS, TGRS, Remote Sensing

APPRENTISSAGE PROFOND POUR LA DÉTECTION DE CHANGEMENTS DANS DES NUAGES DE POINTS 3D

WHEN DEEP LEARNING MEETS POINT CLOUDS AND CHANGE DETECTION

A BIT ABOUT YOU

Vers une approche multimodale basée sur l'apprentissage automatique et profe pendant la chute

GLOBE: Localisation basée sur le recalage de modèles gaussie

Comparaison de modèles d'apprentissage pour la dé

Classification binaire des phases d'action

Étude Comparative des CNN

Détection du Stro Stochastique

No Change Detection

es pré-entraînés d

er-résolution d'imag

par Rééchantillonnac

Apprentissage en Contexte pour l

InteractOR: Interacting with Images Segmentation multi-échelle des feux

La hiérarchie en vision par ordinateur

Étude des méthodes de distillation de co

Évaluation sans référence de la qualité de

3DSES: an indoor Lidar point cloud segmen

Calibration améliorée d'un capteur profileur la

Réseaux de neurones par graphes informés pa mécaniques

Not so much of data point cloud 13D data

-marines

apels from a 31

a reconstruction 3D

que pour la reconstruction de champs de d

uto-calibrée

matique du domaine de convergence d'un asservissement visuel direct

lants : Revue et évaluation d'approches génératives

de représentations d'ima idé par les relations spatiales

ques de qualité pour

mematique de l'appren atellitaire

Reconstr

l'échelle de la méthode NeRF appliquée à l'imagerie

Gaussiennes volumétriques

dustrie

eprésentations multi-modales d'images de

proche multimodale pour l'analuse

sous contraintes géom

But a lot of Deep Learning!

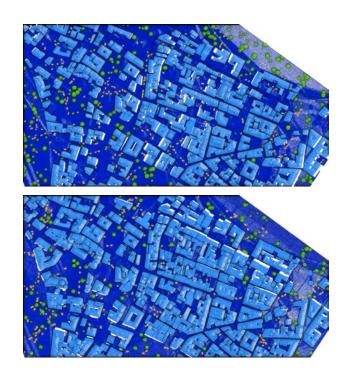
nons Visuelles à partir d'Images

nes dans les modèles vision-langages

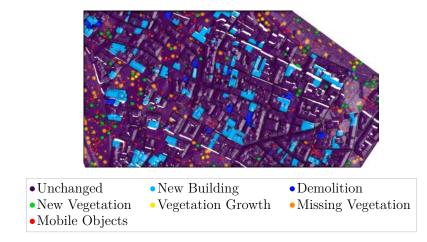
WHEN DEEP LEARNING MEETS POINT CLOUDS AND CHANGE DETECTION

When a new topic meets ORASIS'25 participants

CHANGE DETECTION IN POINT CLOUDS: AN EO PERSPECTIVE

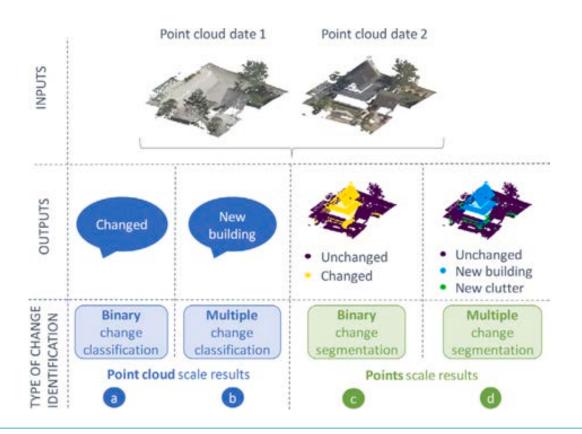


3D data at time 1



3D data at time 2

MULTIPLE TASKS IN CHANGE DETECTION



WHEN DEEP LEARNING MEETS POINT CLOUDS AND CHANGE DETECTION

When a new topic meets ORASIS'25 participants

But findings / good practices are not limited to Point Cloud Change Detection and can be used widely in Computer Vision

So let us start this keynote speech!

WHEN DEEP LEARNING MEETS POINT CLOUDS AND CHANGE DETECTION

Actually, they did only recently!

through the PhD thesis of Iris de Gélis (2020-2023) awarded by AFRIF (special prize 2023) and GDR MAGIS (2024)

https://theses.hal.science/tel-04449411 https://scholar.google.com/citations?user=LH2QjwgAAAAJ https://github.com/IdeGelis

1. Motivation

2. Data

3. Methods

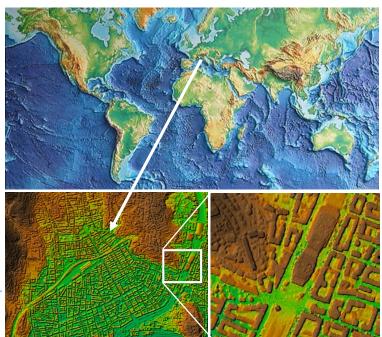
4. Supervision

5. Applications

CO3D EO MISSION

A constellation of 4 satellites to be launched in 2025

- CNES/AIRBUS (https://cp3d.cnes.fr)
- 50cm RGB-NIR
- DSM 1m worldwide (land surface)



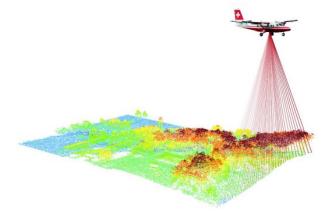
ACQUIRING POINT CLOUDS

Multiple LiDAR sensors (ALS, TLS, MLS)

Photogrammetry from sky or space

LiDAR HD: public data at 50cm / 1m / 5m resolution (more than 10pts/m2)

Raw and classifier PC + DTM/DSM/DEM



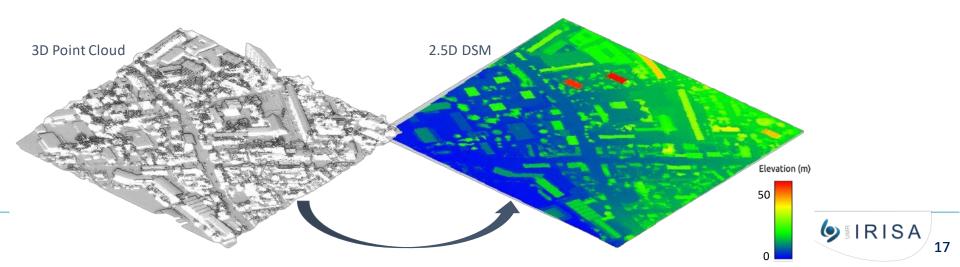
(b) Aerial LiDAR Source: swisstopo.admin.ch

(a) Aerial photogrammetry Source: J. Vallet

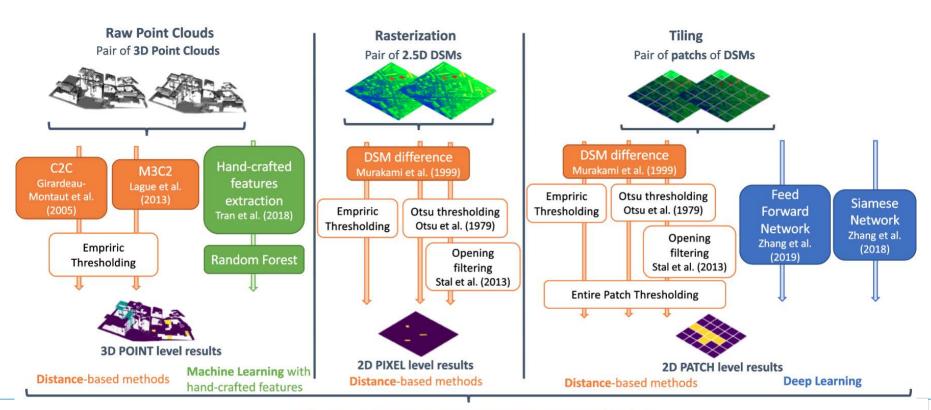
3D = 2.5D?

In many (most) works, Point Clouds are rasterized in DEM/DSM/DTMs:

- (+) allowing to easily use the many existing image processing/analysis tools
- (-) but loosing some (key) information



3D CHANGE DETECTION IN THE EARLY YEARS



1. Motivation

2. Data

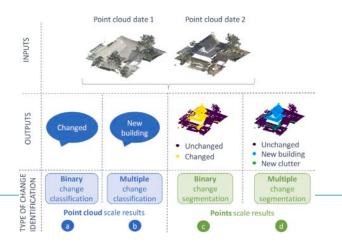
- 3. Methods
- 4. Supervision
- 5. Applications

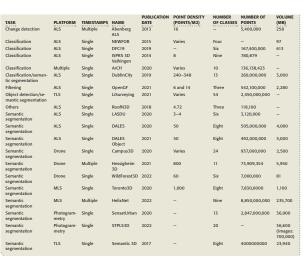
THERE ARE NO DATA LIKE MORE DATA

The role of datasets for DL/ML development in EO has already been

demonstrated (similarly to other applications in CV)

Aerial/Space Point Cloud Change Detection: A new task that requires a new dataset





WHY SIMULATED DATA?

No need for tedious labeling!
 But we need a simulator...

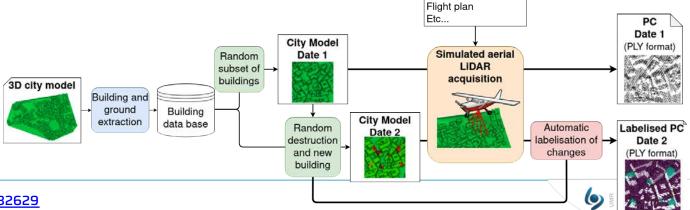
Parameters	Urb3DCD-V2-1 LiDAR low dens.		OCD-V2-2 MS	${\bf Urb3DCD\text{-}Cls}$
	Both PCs	$PC\ 1$	$PC\ 2$	Both PCs
Density (points/m ²)	0.5	0.5	10	10
Noise range across track (°)	0.01	0.2	0.01	0.01
Noise range along track (°)	0	0.2	0	0
Noise scan direction (m)	0.05	1	0.05	0.05
Scan angle (°)	-20 to 20	-2^{-2}	0 to 20	-20 to 20
Overlapping (%)	10	10		10
Height of flight (m)	700	700		700
Annotation level	Point	Point		PC

Configuration of acquisition

Resolution

Noise parameters

- Customize the simulation leads to variants (e.g. point density) of the dataset to assess specific properties of the methods to be benchmarked
- Start with simple simulation, then more complex
- Disseminate the datasets!



https://doi.org/10.3390/rs13132629

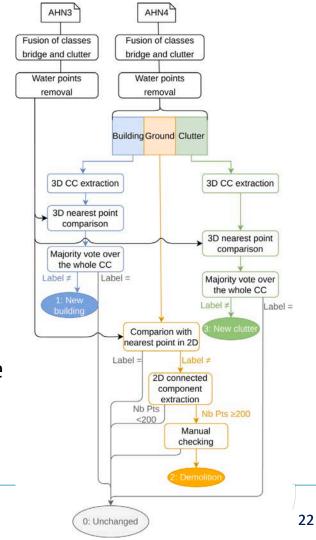
REAL DATA: A REALISTIC OBJECTIVE?

There are several multi-temporal PC datasets with point labels at each date

- AHN
- H3D

How to adapt them for change detection?

- Manual labeling is not realistic
- Automatic labeling is possible, but is not error-free



1. Motivation

2. Data

3. Methods

4. Supervision

5. Applications

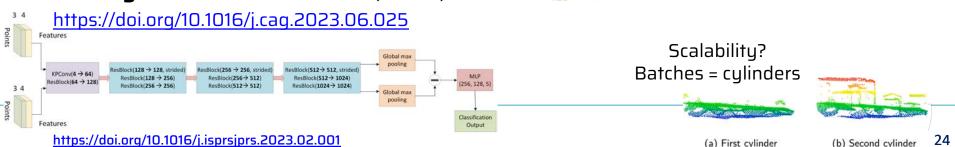
SIAMESE KPCONV

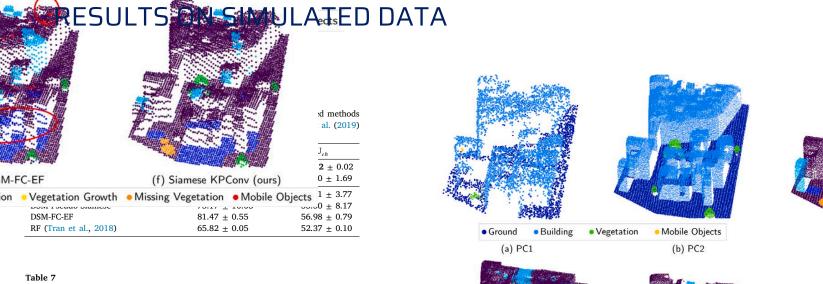
Reuse successful recipes!

- Change detection = Siamese networks
- Point cloud processing = KPConv
- Change detection over point clouds
 = Siamese KPConv (2021, 2023)
- Extended to classification

Points KPConv Features Strided KPConv Near. Upsampling + Concatenation 1 Convolution Shared Weights PC at T1 Strided KPConv Near. Upsampling + Concatenation 1 Convolution Shared Weights

/!\ Plagiarism? SiamKPConv (2023)



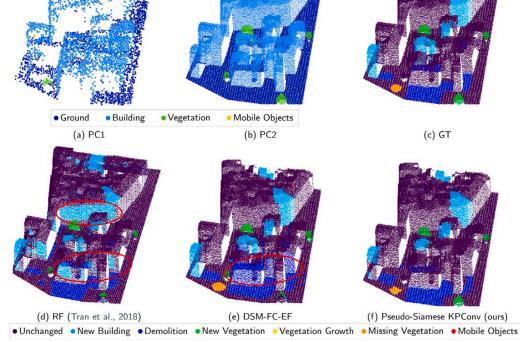


General results in % on Urb3DCD–V2 MS dataset. DSM-based methods are adaptation of Daudt et al. (2018) networks to DSM inspired by Zhang et al. (2019) works.

(c) GT

PC2

Method	mAcc	$mIoU_{ch}$
Siamese KPConv (ours) Pseudo-Siamese KPConv (ours)	73.24 ± 5.7 87.86 \pm 0.94	58.55 ± 4.86 74.48 ± 0.59
DSM-Siamese	69.91 ± 6.18	49.14 ± 4.92
DSM-Pseudo-Siamese	66.50 + 10.82	46.60 + 10.13
DSM-FC-EF	81.25 ± 1.86	55.59 ± 1.84
RF (Tran et al., 2018)	62.20 ± 0.02	46.81 ± 0.01



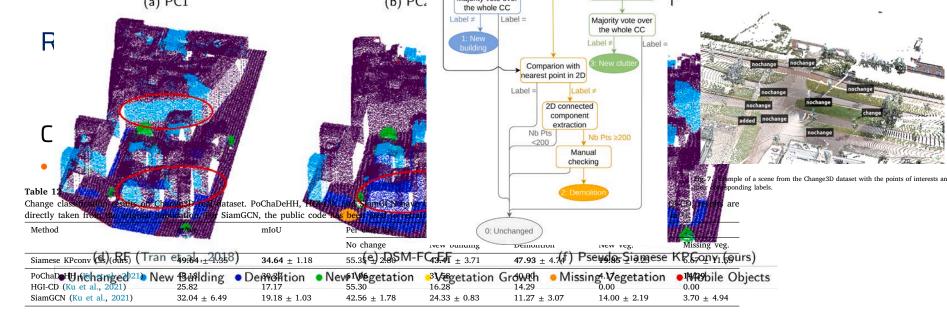


Table 1 Results Metho Siames Pseudc DSM-S

(a) PC1: AHN3

(b) PC2: AHN4

DSM-P

DSM-F

RF (Tr

ected with our method?)

of Daudt et al. (2018) networks to DSM inspired by Zhang et al. (2019) works.

	Per class IoU			
	Unchanged	New building	Demolition	New clutter
0.14	95.94 ± 0.06	83.19 ± 1.54	56.05 ± 1.74	40.53 ± 0.56
4.31	92.96 ± 1.34	76.54 ± 11.39	43.67 ± 1.88	36.76 ± 2.95
3.56	88.58 ± 2.53	60.95 ± 5.54	18.04 ± 1.59	20.54 ± 3.59
).62	92.25 ± 0.11	73.26 ± 0.68	22.91 ± 1.82	28.02 ± 0.73
2.16	92.95 ± 1.49	74.21 ± 0.37	33.68 ± 6.84	26.32 ± 0.04
0.02	93.13 ± 0.00	70.5 ± 0.21	2.04 ± 0.04	13.27 ± 0.02

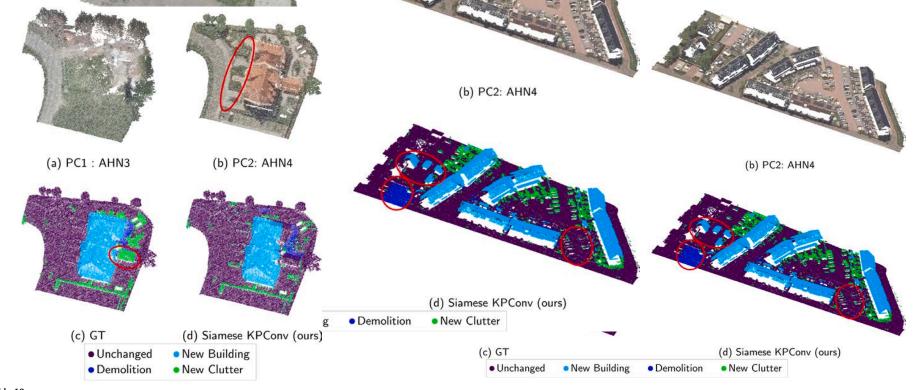


Table 13
Results (given in %) on the AHN-CD dataset sub-part that has been manually annotated. DSM-based methods are adaptation of Daudt et al. (2018) networks to DSM inspired by Zhang et al. (2019) works.

Method	mAcc	mIoU _{ch} Per class IoU				
			Unchanged	New building	Demolition	New clutter
Siamese KPConv (ours)	85.65 ± 1.55	72.95 ± 2.05	89.75 ± 2.18	82.77 ± 5.38	86.44 ± 0.88	46.65 ± 0.16
Pseudo-Siamese KPConv (ours)	87.87 ± 1.89	69.33 ± 1.99	88.90 ± 1.89	86.93 ± 5.32	84.01 ± 0.87	37.08 ± 2.85
DSM-Siamese	50.87 ± 1.15	30.96 ± 2.48	77.10 ± 1.51	76.77 ± 0.79	4.91 ± 8.33	11.20 ± 1.71
DSM-Pseudo-Siamese	70.71 ± 5.09	48.85 ± 7.03	78.00 ± 5.09	75.32 ± 8.59	47.46 ± 11.92	23.76 ± 0.56
DSM-FC-EF	71.47 ± 1.43	45.57 ± 0.98	70.77 ± 1.13	90.32 ± 0.61	30.58 ± 1.76	15.81 ± 0.81
RF (Tran et al., 2018)	47.94 ± 0.02	29.45 ± 0.02	78.24 ± 0.00	74.64 ± 0.03	0.00 ± 0.00	13.72 ± 0.06

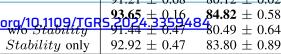
WHEN CHANGE DETECTION NEEDS CHANGE INFORMATION

Siamese KPConv achieves good performance... but does it really pay attention to changes? if not, how can we force it to do so?

Providing handcraft features as input: point distribution, and change information structures as input: point distribution, and change information structures as input: xyz (baseline)

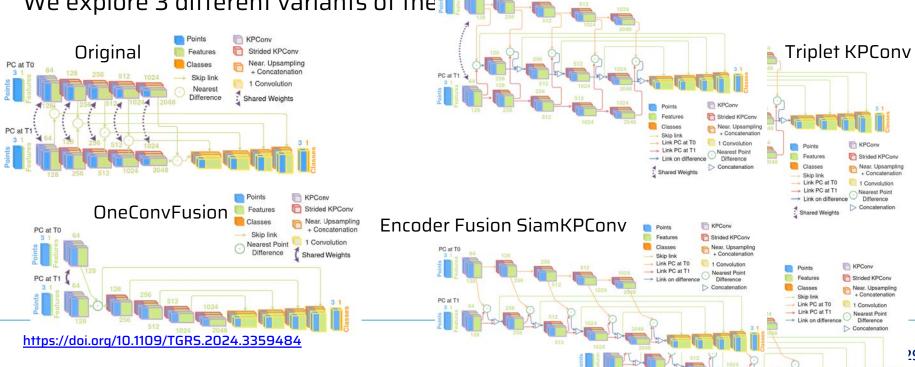
# (of input features	mAcc	$mIoU_{ch}$
0		91.21 ± 0.68	80.12 ± 0.02
10		93.65 ± 0.16	84.82 ± 0.58
9	w/o $Stability$	91.44 ± 0.47	80.49 ± 0.64
1	Stability only	92.92 ± 0.47	83.80 ± 0.89
_	# of input features	mAcc	$\overline{\mathrm{mIoU}_{ch}}$

100 —				nd-crafted featur			¥	1
95	X	¥		¥			*	
90							*	growth
85		ж	×					-
80			36					
75	Ad Innut W	7 (hli)	11			*		-
70		Z (base l ine) Z + 10 hand-craftec	features					-
65		Z + 9 hand-crafted Z + Stabi l ity	features		*	*		
60 L	Unchanged	New building	Demolition	New vegetation	Vegetation growth	Missing vegetation	Mobi l e Obje	_l ct



WHEN CHANGE DETECTION NEEDS LEARNING CHANGE INFORMATION

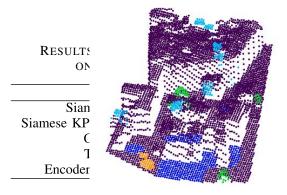
We have seen that change information is useful, but can we learn it? We explore 3 different variants of the



WHEN CHANGE DETECTION NEEDS LEARNING CHANGE INFORMATION

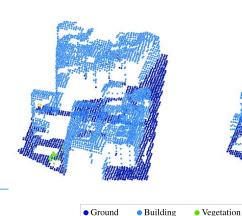
RESULTS IN % OF THE THREE SIAMESE KPCONV EVOLUTIONS ON THE URB3DCD-V2 LOW-DENSITY LIDAR DATASET

Method	mAcc (%)	$mIoU_{ch}$ (%)
Siamese KPConv [19]	91.21 ± 0.68	80.12 ± 0.02
Siamese KPConv (+10 input features)	93.65 ± 0.16	84.82 ± 0.58
OneConvFusion	92.62 ± 1.10	81.74 ± 1.45
Triplet KPConv	92.94 ± 0.53	84.08 ± 1.20
Encoder Fusion SiamKPConv	94.23 ± 0.88	85.19 ± 0.24

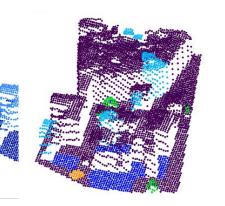


ONV EVOLUTIONS D DATASET

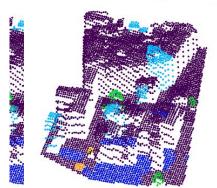
(%)	$mIoU_{ch}$ (%)
1.55	70.65 ± 2.05
1.09	73.29 ± 1.32
0.38	75.62 ± 1.04
0.23	72.37 ± 0.55
0.22	75.00 ± 0.74



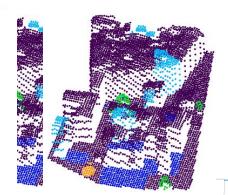
(a) PC 1



(b) PC 2



(c) GT



1. Motivation

2. Data

3. Methods

4. Supervision

5. Applications

FINE-TUNING

- Transfer learning between two different datasets (even simulated ones) is challenging
- Pre-training with simulated data reduces from 3000x the need for target labels

60
55
50
40
Fine-tuning on a model pre-trained on Urb3DCD
Training from scratch
35
20
40
60
80
100
Nb of cylinders as input

Fig. 15. Comparison between training from scratch and using pre-trained weights learned on a simulated dataset of Siamese KPConv. The mean of IoU over classes of change is given as a function of the number of cylinders of 50 m in diameter given as input. In red, the best results obtained with Siamese KPConv trained from scratch over 6000 cylinders with random drawing. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 8

Per-class IoU scores on Urb3DCD-V2 low density LiDAR dataset. DSM-based methods are adaptation of Daudt et al. (2018) networks to DSM inspired by Zhang et al. (2019) works. Results are given in %. Veg. stands for vegetation.

Method	Unchanged	New building	Demolition	New veg.	Veg. growth	Missing veg.	Mobile object
Siamese KPConv (ours)	95.82 ± 0.48	86.68 ± 0.47	78.66 ± 0.47	93.16 ± 0.27	65.17 ± 1.37	65.46 ± 0.93	91.55 ± 0.60
Pseudo-Siamese KPConv (ours)	95.20 ± 0.18	86.23 ± 1.37	76.08 ± 0.54	92.98 ± 0.95	55.96 ± 9.41	63.50 ± 1.41	91.88 ± 0.71
DSM-Siamese	93.21 ± 0.11	86.14 ± 0.65	69.85 ± 1.46	70.69 ± 1.35	8.92 ± 15.46	60.71 ± 0.74	8.14 ± 5.42
DSM-Pseudo-Siamese	93.44 ± 0.23	84.65 ± 2.05	68.41 ± 1.77	70.38 ± 4.98	15.42 ± 13.81	59.77 ± 3.32	33.15 ± 29.12
DSM-FC-EF	94.39 ± 0.12	91.23 ± 0.31	71.15 ± 0.99	68.56 ± 3.92	1.89 ± 2.82	62.34 ± 1.23	46.70 ± 3.49
RF (Tran et al., 2018)	92.72 ± 0.01	73.16 ± 0.02	64.60 ± 0.06	75.17 ± 0.06	19.78 ± 0.30	7.78 ± 0.02	73.71 ± 0.63

Table 14

Transfer learning tests with training on the Urb3DCD–V2 MS sub-dataset and testing on the Urb3DCD–V2 low-density LiDAR dataset. DSM-based methods are adaptation of Daudt et al. (2018) networks to DSM inspired by Zhang et al. (2019) works. Results are given in %. Build., demol., veg. and M.O. stand for building, demolition, vegetation and mobile object respectively.

Method	$mIoU_{ch}$	Per class IoU						
		Unchanged	New build.	Demol.	New veg.	Veg. growth	Missing veg.	M.O.
Pseudo-Siamese KPConv (ours)	59.10	92.91	69.73	63.71	40.88	35.80	65.69	78.79
DSM-Siamese	37.07	92.08	74.61	54.67	39.41	0.43	38.05	15.25
DSM-Pseudo-Siamese	35.77	91.55	69.36	56.02	36.3	4.76	30.11	17.94
DSM-FC-EF	42.01	92.87	67.11	55.63	33.41	1.14	39.1	29.72
RF (Tran et al., 2018)	14.48	87.74	54.03	21.91	8.24	0.47	0.02	2.19

SELF-SUPERVISED LEARNING...

- An example of student mobility at TUM!
- Adapt an SSL CD method to PC
- Hypothesis: changes are rare

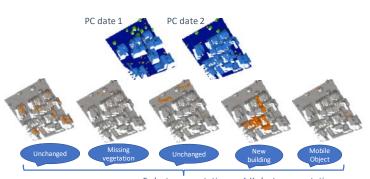
Point Cloud 1 Point Cloud 2 XYZ coordinates **XYZ** coordinates Model Model Deep features extraction Shared weights Nearest point features difference Comparison Deep feature magnitude Deep Change computation Vector Analysis (DCVA) Thresholding Unchanged Changed points of PC2 points of PC2

Table 1
Quantitative results on AHN-CD dataset with both unsupervised and supervised methods. Approximate computation times are provided for the training and testing (on the manually annotated part) step.

		mAcc	mIoU	IoU (%)		Computation	time
		(%)	(%)	Unchanged	Changed	Training	Testing
Unsupervised	SSL-DCVA (ours)	85.20	74.14	78.91	69.38	9 min	40 s
•	SSST-DCVA (ours)	81.88	66.93	70.02	63.85	17 h	40 s
	Siamese KPConv transfer (de Gélis et al., 2023)	81.83	69.76	75.80	63.73	28 h	25 s
	k-means (features from Tran et al. (2018))	81.00	66.81	71.11	62.51	40 min	3 min
	M3C2 (Lague et al., 2013)	51.77	43.56	3.66	39.90	_	5 s
	C2C (Girardeau-Montaut et al., 2005)	76.67	65.16	76.98	53.34	_	5 s
Supervised	Siamese KPConv (de Gélis et al., 2023)	94.23	89.96	92.27	87.65	15 h	25 s

UNSUPERVISED LEARNING

- Another recipe: DeepCluster
- Adaptation to our settings
- Unsupervised method that can be used (d) k-means in a weakly supervised/interactive mode



1. Motivation

2. Data

3. Methods

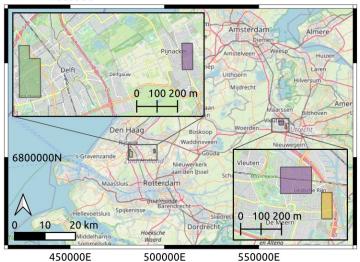
4. Supervision

5. Applications

CITIES

AHN dataset for real data

AHN Dataset



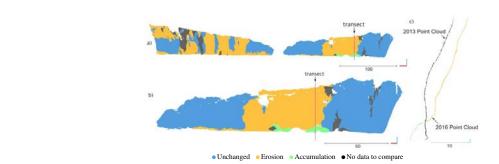
Train — Validation — Test

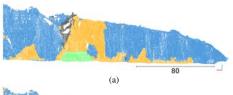
Method	mAcc (%)	mIoU _{ch} (%)
Siamese KPConv [19]	85.65 ± 1.55	70.65 ± 2.05
Siamese KPConv (+10 input features)	88.47 ± 1.09	73.29 ± 1.32
OneConvFusion	90.03 ± 0.38	75.62 ± 1.04
Triplet KPConv	88.25 ± 0.23	72.37 ± 0.55
Encoder Fusion SiamKPConv	90.26 ± 0.22	75.00 ± 0.74
DGM 6:	F0.07 1.1F	20.00 0.40
DSM-Siamese	50.87 ± 1.15	30.96 ± 2.48
DSM-Pseudo-Siamese	70.71 ± 5.09	48.85 ± 7.03
$\operatorname{DSM-FC-EF}$	71.47 ± 1.43	45.57 ± 0.98
RF	47.94 ± 0.02	29.45 ± 0.02

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume V-3-2022 XXIV ISPRS Congress (2022 edition), 6-11 June 2022, Nice, France

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume V-3-2022 Collaboration With Coastal geographers/geomorphology (2022 edition), 6-11 June 2022, Nice, France Collaboration With Coastal geographers/geomorphology (2022 edition), 6-11 June 2022, Nice, France

		Class distribution (%)				
PC pairs	Type	Unchanged	Erosion	Accumulation	"No data to compare"	
2013-09-25 - 2016-01-28	TLS – TP	51.77	40.57	1.32	6.33	
2016-01-28 - 2017-11-02	TP – TLS	66.07	22.43	0.47	11.02	
2017-11-02 - 2018-01-16	TLS – TLS	79.65	16.20	3.19	0.96	
2018-01-16 - 2020-04-14	TLS – TLS	69.67	29.92	0.00	0.41	





V. Villa		M
	80	

	Per class IoU(%)				
	Unchanged	Erosion	Acc.	$mIoU_{int}$	
Siam. KPConv M3C2 + threshold	91.94 95.06	83.86 87.23	70.28 48.20	82.03 68.12	

Unchanged Erosion

Accumulation
 No data to compare

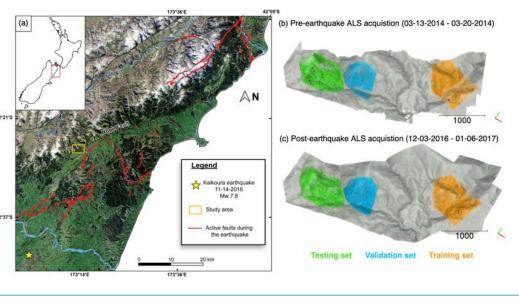
(b)

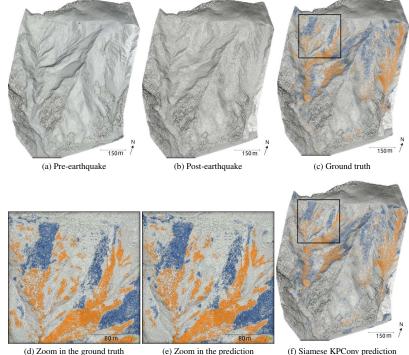
LANDSLIDES

	mAcc	mIoU	Per class IoU (%)		
Method	(%)	(%)	Unchanged	Source	Deposit
Encoder Fusion SiamKPConv	93.87	83.84	93.58	74.38	83.57

Collaboration with geomorphologists in Rennes

No need for prior vegetation masking





• Source • Deposit

WHEN DEEP LEARNING MEETS POINT CLOUDS AND CHANGE DETECTION

Lessons learnt from the PhD thesis of Iris de Gélis

CONTRIBUTIONS

An example of a prolific thesis, awarded by French Pattern Recognition Society

- 1. State-of-the-art (comparative review) + synthetic/real datasets (IGARSS21+RS21)
- 2. Siamese KPConv, first deep method for PC change detection (ISPRS21+P&RS23)
- 3. Strategies to better embed/learn the change information (TGRS24)
- 4. Countering supervision through SSL (mobility at TUM) (OJPRS23)
- 5. Countering supervision through unsupervised learning with DC3DCD (P&RS23)
- 6. Applications on cliffs (ISPRS22) and landslides (IGARSS24) through collaboration with other researchers

PERSPECTIVES

The initial PhD topic was deep learning on PC time series

If the study was to be restarted today:

- Less supervision: foundation models?
- Efficiency (green AI)
- XAI

LESSONS LEARNT

- 1. No dataset: build your own! (possibly by adapting some existing ones)
- 2. Keep an eye on the literature (the field is evolving fast)
- 3. Don't reinvent the wheel (numerous methods with codes are available, but their use can be time-consuming)
- 4. Publish your code for impactful research (and helping not reinventing the wheel)
- Consider a doctoral mobility!