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A BIT ABOUT ME

• Full Professor at University of South Brittany since 2010: www.univ-ubs.fr
Adjunct Professor at UiT – The Arctic University of Norway since 2023
Visiting Professor at ESA – Phi-lab since 2025

• Founder and former head of OBELIX group at IRISA: 
www.irisa.fr/obelix (25 researchers on AI4EO)

• Chair of the GeoData Science track
EMJM Copernicus Master in Digital Earth: www.master-cde.eu

• Chair of the next AI4EO symposium (Rennes, September 2025): ai4eo2025.irisa.fr

• Looking for 2 new PhD students
Explainable multimodal AI for assessing dynamic vulnerabilities from geospatial data
Deep learning change detection from heterogeneous multitemporal remote sensing data

http://www.univ-ubs.fr/
http://www.univ-ubs.fr/
http://www.univ-ubs.fr/
http://www.irisa.fr/obelix
http://www.master-cde.eu/
http://www.master-cde.eu/
http://www.master-cde.eu/
http://ai4eo2025.irisa.fr/


33

OBELIX GROUP
http://www-obelix.irisa.fr/

Focus on AI for EO
Founded 2013, ≈ 25 members (4 Prof, 7 Assoc.Prof, 5 Postdocs, 10 PhD, 
and regular visiting researchers… you’re welcome!)
> 300 publications, 25 projects, 3 M€ contracts

Summer retreat 2024
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OBELIX
Scientific challenges

Earth and environment observations
• Multiple sensors (satellites, drones, etc.)
• Multiple nature of data (Multi or hyperspectral, LiDAR, SAR, temporal, etc.)
• Multiple settings of acquisition  (ground or from above, atmospheric 

conditions)
• Tons of acquisition (large scale)
• Few labels, few annotations, sometimes available in multiple forms 

(vectorized, rasterized, point clouds)
• Uncertain, incomplete and noisy most of the time

à Complex data that need dedicated learning and analysis methods for a 
variety of high-level tasks

Object detection Land cover 
mapping

Lidar data
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OBELIX
A large playfield for many machine learning problems….
Handle the specific nature of data in the learning process

• domain adaptation, data imputation, robust learning with label noise, 
few-shot or multi-task learning (mostly in a deep learning context)

Exploit structure in the data
• Either by extracting specifically from the data or exploiting user-

knowledge 
Develop generative modeling for earth observation

• transfer across modalities (e.g. multi-modal image fusion), super-
resolution, or inverse reconstruction problem with deep priors

Physics-driven Machine learning
• Integrate physics priors in predictions and exploit physics in explaining 

dynamics in neural nets
High performance computing

• Tackle large scale computing problems (energy efficiency) by e.g. 
quantization of neural nets.

• Quantum computing (prospective)

'DWD�VDPSOH�&L�KL
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OBELIX
… that require many novel learning tools

<latexit sha1_base64="sNR5VhrpU8lBoS8O8VmMmhkjRGs="></latexit>

Tc(µ, ⌫) = inf
⇡2⇧(µ,⌫)

R
X⇥Y c(x, y)d⇡(x, y)

Optimal Transport

Deep Learning
Structural regularization

Morphological hierarchies

Gradient Flows

Publication Communities
Machine Learning (Theoretical focus)

NeurIPS, ICML, ICLR, AISTATS, JMLR
Computer vision

ICCV, CVPR, ECCV, ACCV, TPAMI
Remote Sensing (Applied focus)

IEEE IGARSS, TGRS, Remote Sensing

…
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APPRENTISSAGE PROFOND POUR LA DÉTECTION DE CHANGEMENTS 
DANS DES NUAGES DE POINTS 3D

WHEN DEEP LEARNING MEETS POINT CLOUDS AND CHANGE DETECTION
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A BIT ABOUT YOU
Vers une approche multimodale basée sur l'apprentissage automatique et profond pour la détection d'impact 
pendant la chute

GLOBE: Localisation basée sur le recalage de modèles gaussiens en vue d'oiseau orthographique

Comparaison de modèles d'apprentissage pour la détection de victimes lors des catastrophes majeures

Classification binaire des phases d'action dans des vidéos de compétitions sportives amateurs

Étude Comparative des CNNs et des Vision-Language Models pour la Classification d'Images de Graphiques

Détection du Stress Post-Traumatique à l'Aide d'Enregistrements Audio : Une Approche Basée sur les Transformer 
Stochastiques

Echantillonage de groupes de trames dans l'édition vidéo par modèle de diffusion

Étude comparative de méthodes de Classification Hiérarchique d'images

Adam SLAM - the last mile of camera calibration with 3DGS

An eye tracking experimental protocol for the analysis of phonetic processing in individuals with Trisomy 21 
(Down Syndrome)

Annotation collaborative zero-shot par deux modèles pré-entraînés dans l'étude du flux de bulles de gaz

Few-shot Multispectral Object Detection

Flow matching pour la super-résolution d'images satellitaires Sentinel-2

Augmentation par Rééchantillonnage pour l'Apprentissage Contrastif de Séries Temporelles : Application à la 
Télédétection

Apprentissage en Contexte pour la Classification de Nouveaux Patterns Visuels

InteractOR: Interacting with Images during Surgery in Mixed Reality through Real-time Instrument Segmentation

Segmentation multi-échelle des feux dans des scènes complexes

La hiérarchie en vision par ordinateur : Bilan et perspectives

Étude des méthodes de distillation de connaissance pour la segmentation sémantique des images sous-marines

Évaluation sans référence de la qualité des nuages de points via la saillance visuelle 3D

3DSES: an indoor Lidar point cloud segmentation dataset with real and pseudo-labels from a 3D model

Calibration améliorée d'un capteur profileur laser pour l'inspection et la reconstruction 3D

Réseaux de neurones par graphes informés par la physique pour la reconstruction de champs de contraintes 
mécaniques

Stéréophotométrie auto-calibrée

Caractérisation mathématique du domaine de convergence d'un asservissement visuel direct

Animation d'avatars parlants : Revue et évaluation d'approches génératives

Apprentissage contrastif de représentations d'images guidé par les relations spatiales

Analyse de métriques de qualité pour des images en couleurs

Problématique de l'apprentissage continu pour le passage à l'échelle de la méthode NeRF appliquée à l'imagerie 
satellitaire

Reconstruction de fumée à partir d'images avec des primitives Gaussiennes volumétriques

Modèles de fondations pour la détection de défauts visuels en industrie

ProMM-RS : Exploration de l'apprentissage probabiliste pour les représentations multi-modales d'images de 
télédétection

Transfert de coloration assisté par MALDI-MSI : proposition d'une approche multimodale pour l'analyse 
histopathologique

Recalage 3D par apprentissage d'une matrice doublement stochastique sous contraintes géométriques

Détection d'incendie par identification d'anomalies utilisant la distillation

Modèles de diffusion pour le transfert de style synthétique vers réel

Modèle Vision-Langage à Détection Zero-Shot pour la Vidéosurveillance Intelligente

Fast 3D point clouds retrieval for Large-scale 3D Place Recognition

Mise en place d'une méthode de reconstruction 3D du sol lunaire à partir de plusieurs images dans un contexte 
d'atterrissage

ScanTalk: 3D Talking Heads from Unregistered Scans

Apport de l'apprentissage profond semi-supervisé et de la télédétection par drones pour améliorer la modélisation 
de la distribution des insectes aquatiques émergents

Modèles de flux pour l'adaptation de domaine non-supervisée d'images d'observation de la Terre

Attention Guidée par la Segmentation pour la Réponse Automatique à des Questions Visuelles à partir d'Images 
de Télédétection

DVSim : un simulateur de vision événementielle pour l'apprentissage de réseaux de neurones à impulsions

Unification et extension des mesures de précision et de rappel pour l'évaluation des modèles génératifs

Visualisation des interactions multimodales dans les modèles vision-langages

No Change Detection

Not so much of 

Point Cloud / 3D data

But a lot of Deep Learning!
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WHEN DEEP LEARNING MEETS POINT CLOUDS AND CHANGE DETECTION

When a new topic meets ORASIS’25 participants
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CHANGE DETECTION IN POINT CLOUDS: AN EO PERSPECTIVE

3D data at time 1

3D data at time 2

1.3. Proposed simulated datasets for point cloud change detection

Ground Building Vegetation Mobile Objects
(a) PC 1 (b) PC 2

Unchanged New Building Demolition
New Vegetation Vegetation Growth Missing Vegetation
Mobile Objects

(c) Labeled changes on PC 2

Figure 1.15 – Sample of Urb3DCD-V2 PCs illustrating examples of occlusions
at two timestamps (a,b) with the corresponding 7 types of changes simulated in (c).

37
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MULTIPLE TASKS IN CHANGE DETECTION ISPRS Journal of Photogrammetry and Remote Sensing 197 (2023) 274–291

275

I. de Gélis et al.

Fig. 1. Different types of change detection results, at the scale of PCs (a and b) or
points (c and d) and with binary (a and c) or multiple classes (c and d). In this study,
we tackle the multiple change issue (d). In addition, for the purpose of comparison with
the state-of-the-art, a method is also proposed to address multiple change classification
(b).

in unchanged areas, making the change detection task even harder.
Therefore, rasterizing PCs onto regular grids of pixels of height facil-
itates the application of traditional 2D image processing approaches.
But the rasterization process involves a loss of possibly interesting
information, e.g., on building facades. Furthermore, depending on the
chosen grid size, points are aggregated into a single value, leading
to a potentially drastic loss of information with too large steps. On
the other hand, a too thin grid size leads to plenty of empty pixels
generally filled with interpolation causing approximate data. Aside
from 2D DSM rasterization, 3D rasterization into a 3D voxel grid is also
a possibility and this facilitates the processing by using, for example,
convolutions with 3D kernels. However, similarly to 2D rasterization,
a large grid size also implies a loss of information, and a too thin grid
size quickly becomes computationally expensive because of the sparse
characteristics of 3D environments. Lastly, it should be outlined that
the computation of 3D meshes or specific features related to PC is tricky
with rasterized data, advocating for using raw 3D PCs.

Concerning 3D PCs change detection, binary (change/no-change)
or multiple (nature of change) information can be extracted. In this
study, change categorization refers to identification of changes among
multiple classes. Then, similarly to 2D images, change detection meth-
ods can return either classification or segmentation results. In a change
classification framework, results are obtained at the level of the PCs,
i.e., one label for one pair of PCs. Conversely, change segmentation
results are given at the point scale. The different settings of the change
detection and categorization problem from 3D point clouds are sum-
marized in Fig. 1. In this study, we mainly aim to tackle the multiple
change segmentation task (Fig. 1d) giving a finer precision of results.
However, for the sake of comparison with state-of-art methods, we will
also address the multiple change classification task.

While deep learning provides interesting results in remote sensing
images (Zhu et al., 2017; Ma et al., 2019) or 3D PCs object detection
and segmentation (Qi et al., 2017b; Shi et al., 2019; Thomas et al.,
2019; Guo et al., 2020), to the best of our knowledge, there is no deep
learning method for the multiple change segmentation task dealing
directly with raw 3D PCs. Therefore, in this paper, the following
contributions are proposed:

1. A 3D PCs Siamese Kernel Point convolution (KPConv) network
able to deal with multiple change segmentation, the first deep

method to provide results at point scale.1 This network is also
adapted for a multiple change classification task in order to al-
low comparison with the state-of-the-art. The code is available at
the following link: https://github.com/IdeGelis/torch-points3d-
SiameseKPConv.

2. Three new datasets for 3D change segmentation and classifica-
tion, publicly available to foster research in the field and ease
reproducibility.

After a presentation of related works in the following section, we
introduce in Section 3 both of our proposed networks, named Siamese
KPConv and its Cls variant, for 3D point clouds change segmentation
and classification, respectively. Then, in Section 4 we propose the three
new datasets: the synthetic Urb3DCD–V2 dataset as well as its classifi-
cation version and Actueel Hoogtebestand Nederland Change Detection
(AHN-CD), a change detection version of the real AHN dataset. Sec-
tion 4 also presents Change3D, a public dataset for change detection
at PCs scale. We conduct experiments on these datasets and report
the results in Section 5. Section 6 is devoted to discussion, and we
show that pre-training on simulated data greatly reduces the cost of
manual annotation on real data. Finally, we provide a conclusion and
perspectives in Section 7.

2. Related work

In the following section, we review existing works on 3D PCs change
detection. We also discuss some representative works on Siamese archi-
tectures and deep learning for 3D PCs.

2.1. 3D PCs change detection

Existing traditional methods dealing directly with 3D PC change
detection and categorization can be divided into two groups. Post-
classification methods firstly perform a semantic segmentation of each
PC and then compare obtained labels in order to retrieve changes
(Awrangjeb et al., 2015; Roynard et al., 2016; Siddiqui and Awrangjeb,
2017; Xu et al., 2015b; Dai et al., 2020; Voelsen et al., 2021). Con-
versely, pre-classification methods immediately highlight changes and
then classify them (Xu et al., 2015a). Both pre- and post-classification
methods embed errors coming from each step, thus leading to errors in
the final results (Xu et al., 2015b). To counter this issue, Tran et al.
(2018) suggest performing change detection and categorization in a
single step by using a Random Forest (RF) algorithm trained on hand-
crafted features related to point distribution, geometrical attributes,
terrain elevation, multi-target capability of LiDAR and a ‘‘between
date’’ feature.

While numerous works dealing with feature extraction, object detec-
tion, and segmentation in 3D PCs are available, the change detection
issue still remains largely unexplored with deep learning (de Gélis et al.,
2021b). Indeed, some studies apply Siamese or Feed-Forward with early
fusion (EF) networks on 2.5D DSM. The results obtained simply consist
of a binary classification at patch level (Zhang et al., 2019). Another
deep architecture has been reported in Ku et al. (2021), namely Siamese
Graph Convolutional Network (SiamGCN). This architecture is designed
in the context of the Shape Retrieval Challenge 2021 (SHREC21) on
Change3D dataset. This dataset was designed for multiple change classi-
fication in a complex street environment, i.e., it consists in recognizing
the type of change between two PCs centered on an urban furniture
(e.g., road signs). Thus, the expected result is provided at the PCs scale
corresponding to the multiple change classification task (Fig. 1b).

1 A preliminary version of this method was presented at the ISPRS Congress
2021 (de Gélis et al., 2021a).



12

WHEN DEEP LEARNING MEETS POINT CLOUDS AND CHANGE DETECTION

When a new topic meets ORASIS’25 participants

But findings / good practices are not limited to Point Cloud 
Change Detection and can be used widely in Computer Vision

So let us start this keynote speech!
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WHEN DEEP LEARNING MEETS POINT CLOUDS AND CHANGE DETECTION

Actually, they did only recently! 

through the PhD thesis of Iris de Gélis (2020-2023)
awarded by AFRIF (special prize 2023) and GDR MAGIS (2024)

https://theses.hal.science/tel-04449411
https://scholar.google.com/citations?user=LH2QjwgAAAAJ
https://github.com/IdeGelis

https://theses.hal.science/tel-04449411
https://theses.hal.science/tel-04449411
https://theses.hal.science/tel-04449411
https://scholar.google.com/citations?user=LH2QjwgAAAAJ
https://github.com/IdeGelis
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1. Motivation

2. Data

3. Methods

4. Supervision

5. Applications
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CO3D EO MISSION

A constellation of 4 satellites to be launched in 2025 
• CNES/AIRBUS (https://co3d.cnes.fr)
• 50cm RGB-NIR
• DSM 1m worldwide (land surface)

Figures from Laurent Lebègue (CNES)
https://doi.org/10.5194/isprs-archives-XLIII-B1-2020-299-2020

Atelier DINAMIS 11 Juin 2021

CO3D – Constellation 3D
Pour un MNS mondial à 1m

Delphine Leroux (DNO/OT/TA)
Laurent Lebègue (DSO/OT/CXI) 

CO3D Principaux challenges

Nouvelle génération de 4 
satellites d’OT low-cost en 

constellation
Imagerie à 50 cm

RGB + NIR

low-cost (1/10ème du prix 
institutionnel Pléiades)

tout-automatique
traitement dans le cloud

MNS mondial

Précision altimétrique
Objectif 1m (relatif)

Résolution 1m (4,12,15,30)

Paire stéréo CO3D Orbite descendante 
502 km
SSO 11H

Paire stéréo CO3D

2 paires

https://co3d.cnes.fr/
https://doi.org/10.5194/isprs-archives-XLIII-B1-2020-299-2020
https://doi.org/10.5194/isprs-archives-XLIII-B1-2020-299-2020
https://doi.org/10.5194/isprs-archives-XLIII-B1-2020-299-2020
https://doi.org/10.5194/isprs-archives-XLIII-B1-2020-299-2020
https://doi.org/10.5194/isprs-archives-XLIII-B1-2020-299-2020
https://doi.org/10.5194/isprs-archives-XLIII-B1-2020-299-2020
https://doi.org/10.5194/isprs-archives-XLIII-B1-2020-299-2020
https://doi.org/10.5194/isprs-archives-XLIII-B1-2020-299-2020
https://doi.org/10.5194/isprs-archives-XLIII-B1-2020-299-2020
https://doi.org/10.5194/isprs-archives-XLIII-B1-2020-299-2020
https://doi.org/10.5194/isprs-archives-XLIII-B1-2020-299-2020
https://doi.org/10.5194/isprs-archives-XLIII-B1-2020-299-2020
https://doi.org/10.5194/isprs-archives-XLIII-B1-2020-299-2020
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ACQUIRING POINT CLOUDS

Multiple LiDAR sensors
(ALS, TLS, MLS)

Photogrammetry 
from sky or space

LiDAR HD: public data at
50cm / 1m / 5m resolution
(more than 10pts/m2)

Raw and classifier PC
+ DTM/DSM/DEM

More and more 3D data available...

©CNES, Airbus
https://www.intelligence-airbusds.com/

https://www.ign.fr/institut/lidar-hd-vers-une-nouvelle-cartographie-3d-du-territoire

5

Introduction

(b) Aerial LiDAR
Source: swisstopo.admin.ch

(a) Aerial photogrammetry
Source: J. Vallet

Figure 6 – Illustration of aerial LiDAR and photogrammetry acquisition.

costly. Photogrammetric acquisition can be terrestrial, aerial, or even from satellites. In
particular, satellite missions are interesting since once launched, the acquisition of regular
data over large area is costless compared to an aerial survey, even though obtained PCs
are less dense and accurate. Among the main satellite missions to acquire 3D data, the
Pléiades constellation provides, since 2011, 70 cm pan-chromatic images that can be used
for photogrammetric reconstruction. As it will soon end, it should normally be replaced by
the Pléiades Néo constellation providing 30 cm resolution images allowing to considerably
improve 3D data surveying from space. The context of this thesis also relies on the future
launch of the 3D Optical Constellation (CO3D) mission that is especially planned to
produce 3D acquisitions of worldwide land surfaces (Lebègue et al., 2020). This latter
mission aims to obtain a 2.5D modelling of the surface (i.e., Digital Surface Model (DSM))
at 1 m resolution. Finally, even though far less common, Synthetic Aperture Radar (SAR)
tomography can also be used to generate 3D data by coupling several SAR images with
slightly di!erent viewing angles (Zhu and Bamler, 2010; Aghababaei et al., 2020).

No matter the way of acquisition, 3D PCs share common characteristics drastically
di!erent from usual 2D images. A Point Cloud (PC) is an unordered and sparse set of
points represented by their 3D coordinates in a frame of reference (Cartesian coordinate
system), an example of such data is given in Figure 7. Unlike 2D images organized through
a regular grid of pixels (2D rasters), 3D PCs are disordered and irregularly distributed,
which makes the extraction of information from such data tricky, and between-timestamp
comparisons are even trickier. Indeed, there is no direct point-to-point correspondence.

4
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3D = 2.5D?

In many (most) works, Point Clouds are rasterized in DEM/DSM/DTMs:
(+) allowing to easily use the many existing image processing/analysis tools
(-) but loosing some (key) information

Introduction

3D Point Cloud 2.5D DSM

50

0

Figure 8 – Illustration of a 3D point cloud and its corresponding rasterization
into 2.5D DSM. The DSM is colorized as function of the height.

2D rasterization, a large grid size also implies a loss of information, and a too thin grid
size quickly becomes computationally expensive because of the sparse characteristic of 3D
environments.

Deep learning for Earth observation

Thanks to the increase in computing capacity 4, the use of deep learning has become
widespread in the recent decade. Deep learning is a subset of machine learning which
uses mathematical and statistical approaches to give to computers the ability to learn
from data to solve a given problem, also called task. Both machine and deep learning are
part of what is called artificial intelligence (AI). While machine learning relies on hand-
crafted features to represent the data, deep learning learns to extract its own features
related to the task to be solved. From the first proposal of multi-layer perceptron (a
perceptron being an artificial neuron) to the current deep networks, many improvements
have been made. They can now tackle multiple tasks related to data understanding,
thanks to fully supervised learning relying on annotated samples, or even unsupervised
learning (i.e., without the use of labeled samples). Remote sensing and Earth observation
also benefits from these methodological improvements (Zhu et al., 2017). In particular,
deep learning has been successfully used for land cover classification (Kussul et al., 2017),
object detection (Ding et al., 2021), satellite image time series analysis (Pelletier et al.,

4. Experimentation conducted in this thesis has been made available thanks to the access to clusters
from IRISA (https://cluster-irisa.univ-ubs.fr) and Jean Zay (http://www.idris.fr/jean-za
y/).

6
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Remote Sens. 2021, 13, 2629 10 of 29

state-of-the-art considered in our comparative study, organized according to their input
data types and processing scales.

Figure 6. A presentation of the different state-of-the-art methods for change detection and characterization, considering
three different levels of information: raw PCs, 2D rasterized PCs and patches of DSMs.

As far as the metrics are concerned, let us emphasize that the urban change detection
problem usually faces the problem of large class imbalance (i.e., most of the 3D points or 2D
pixels are unchanged). Thus, the usual overall accuracy or precision is not an appropriate
for assessing the performance of a given method. Indeed, a method can reach up to 99%
precision even if every pixel or point is predicted as unchanged.

We instead prefer to rely on the mean of intersection over union (IoU) over classes of
changes. According to the type of output, it was computed for each pixel, point or patch. In
the case of binary classification, this corresponded to the IoU over positive class. Otherwise,
for a multi-class scenario, this was the average between the IoU of the new construction
class and the IoU of the demolition class.

All methods were tested on each sub-dataset presented in Section 2.2. Thus a first
category of tests showed the capabilities of different methods in various contexts: from
high resolution with not much noise to low resolution very noisy data as input. Thereby,
five tests were carried out for each of the six presented methods. Results are presented in
Section 3.1. Then, for machine and deep learning methods, we conducted other tests that
considered the size of the training dataset thanks to sub-datasets 1.a, 1.b and 1.c presented
in Table 1. Finally, we also aimed to study the behaviors of methods trained on a dataset
with a different configuration than the testing set. Thus, for each sub-dataset, we trained
machine and deep learning methods before testing them on the other sub-dataset without
any re-training process.

2.4. Experimental Settings

C2C and M3C2 were performed with CloudCompare software [50]. We re-implemented
feature extraction in Python with all features of [46] except those using LiDAR’s multi-
target capability, because our dataset does not contain such information. We observed
that some features are very dependent on the neighboring radius size that is chosen. As
our datasets had different resolutions than the dataset used in the study of Tran et al., we
tested several values of the radius and selected the best value according to each resolution.
Thus, for all sub-datasets with the resolution of 0.5 points/m2, the radius was fixed to

3D CHANGE DETECTION IN THE EARLY YEARS
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THERE ARE NO DATA LIKE MORE DATA

The role of datasets for DL/ML development in EO has already been 
demonstrated (similarly to other applications in CV)

Aerial/Space Point Cloud Change Detection:
A new task that requires a new dataset

                                           IEEE GEOSCIENCE AND REMOTE SENSING MAGAZINE    SEPTEMBER 202366 

and 20 point cloud-based datasets) entries (see Tables 1 
and 2), including related metadata. We point out that, al-
though being extensive, this list is far from being complete 
due to the fact that a large number of new datasets are 
published every year. Furthermore, the metadata required 
to generate the plot of Figure 1 are available only for a sub-
set of 290 datasets (roughly 73%). In the horizontal axis, 
we indicate the year of publication. The vertical axis shows 
the volume of a dataset, while the circle radius reflects the 
number of spatial pixels covered by a dataset. For a more 
detailed explanation of how we measure dataset size, 

please refer to Figure S1 and “How to Measure the Size of 
a Dataset.” 

Figure 1 provides a straightforward overview of the pro-
portion among size and spatial dimension, and therefore 
about the overall information content given by features 
such as resolution, sensor modalities, number of bands/
channels, and so on. Each circle is accompanied by an in-
dex, allowing for identification of the dataset in the data-
base (see Table 2) that provides further information. Note 
that we use the category “Others” for datasets that do not 
belong to any of the other categories and are too rare to 

TABLE 1. ALTHOUGH A THOROUGH ANALYSIS OF LIDAR DATASETS IS BEYOND THE SCOPE OF THIS SURVEY, WE DO PROVIDE AN 
OVERVIEW OF SEVERAL EXAMPLE DATASETS. POINT CLOUD DATASETS ARE ANOTHER LARGE GROUP OF BENCHMARK DATA THAT ARE 
WIDELY USED IN THE LITERATURE AND INDUSTRY. WITHIN EO THE MOST COMMON SOURCE FOR POINT CLOUD DATA ARE LIDAR SEN-
SORS THAT USE LIGHT IN THE FORM OF LASER PULSES TO MEASURE THE DISTANCE TO THE SURFACE. THE PRIMARY SOURCES ARE 
AIRBORNE LASER SCANNING (ALS), TERRESTRIAL LASER SCANNING (TLS), AND MOBILE LASER SCANNING (MLS) DEVICES. OTHER 
SOURCES OF POINT CLOUDS AND 3D DATA INCLUDE PHOTOGRAMMETRIC METHODS (STRUCTURE FROM MOTION, MULTI-VIEW STE-
REO, AND DENSE MATCHING APPROACHES) AND TOMOGRAPHIC SAR. AS 3D DATA TYPICALLY COME WITH FEATURES THAT ARE VERY 
DIFFERENT FROM 2D IMAGE DATA, SUCH DATASETS ARE BEYOND THE SCOPE OF THIS ARTICLE. NEVERTHELESS, TABLE 1 PROVIDES A 
SHORT LIST OF EXAMPLE LIDAR/POINT CLOUD DATASETS FOR INTERESTED READERS.

TASK PLATFORM TIMESTAMPS NAME 
PUBLICATION 
DATE

POINT DENSITY 
(POINTS/M2)

NUMBER 
OF CLASSES

NUMBER OF 
POINTS 

VOLUME 
(MB) 

Change detection ALS Multiple Abenberg 
ALS 

2013 16 — 5,400,000 258 

Classification ALS Single NEWFOR 2015 Varies Four — 97 

Classification ALS Single DFC19 2019 — Six 167,400,000 613 

Classification ALS Single ISPRS 3D 
Vaihingen

2014 8 Nine 780,879 —

Classification Multiple Single ArCH 2020 Varies 10 136,138,423 —

Classification/seman-
tic segmentation 

ALS Single DublinCity 2019 240–348 13 260,000,000 3,000 
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700,000)

Semantic  
segmentation 

TLS Single Semantic 3D 2017 — Eight 4000000000 23,940 

Authorized licensed use limited to: UNIVERSITE DE BRETAGNE SUD. Downloaded on October 01,2024 at 05:39:21 UTC from IEEE Xplore.  Restrictions apply. 

ISPRS Journal of Photogrammetry and Remote Sensing 197 (2023) 274–291

275

I. de Gélis et al.

Fig. 1. Different types of change detection results, at the scale of PCs (a and b) or
points (c and d) and with binary (a and c) or multiple classes (c and d). In this study,
we tackle the multiple change issue (d). In addition, for the purpose of comparison with
the state-of-the-art, a method is also proposed to address multiple change classification
(b).

in unchanged areas, making the change detection task even harder.
Therefore, rasterizing PCs onto regular grids of pixels of height facil-
itates the application of traditional 2D image processing approaches.
But the rasterization process involves a loss of possibly interesting
information, e.g., on building facades. Furthermore, depending on the
chosen grid size, points are aggregated into a single value, leading
to a potentially drastic loss of information with too large steps. On
the other hand, a too thin grid size leads to plenty of empty pixels
generally filled with interpolation causing approximate data. Aside
from 2D DSM rasterization, 3D rasterization into a 3D voxel grid is also
a possibility and this facilitates the processing by using, for example,
convolutions with 3D kernels. However, similarly to 2D rasterization,
a large grid size also implies a loss of information, and a too thin grid
size quickly becomes computationally expensive because of the sparse
characteristics of 3D environments. Lastly, it should be outlined that
the computation of 3D meshes or specific features related to PC is tricky
with rasterized data, advocating for using raw 3D PCs.

Concerning 3D PCs change detection, binary (change/no-change)
or multiple (nature of change) information can be extracted. In this
study, change categorization refers to identification of changes among
multiple classes. Then, similarly to 2D images, change detection meth-
ods can return either classification or segmentation results. In a change
classification framework, results are obtained at the level of the PCs,
i.e., one label for one pair of PCs. Conversely, change segmentation
results are given at the point scale. The different settings of the change
detection and categorization problem from 3D point clouds are sum-
marized in Fig. 1. In this study, we mainly aim to tackle the multiple
change segmentation task (Fig. 1d) giving a finer precision of results.
However, for the sake of comparison with state-of-art methods, we will
also address the multiple change classification task.

While deep learning provides interesting results in remote sensing
images (Zhu et al., 2017; Ma et al., 2019) or 3D PCs object detection
and segmentation (Qi et al., 2017b; Shi et al., 2019; Thomas et al.,
2019; Guo et al., 2020), to the best of our knowledge, there is no deep
learning method for the multiple change segmentation task dealing
directly with raw 3D PCs. Therefore, in this paper, the following
contributions are proposed:

1. A 3D PCs Siamese Kernel Point convolution (KPConv) network
able to deal with multiple change segmentation, the first deep

method to provide results at point scale.1 This network is also
adapted for a multiple change classification task in order to al-
low comparison with the state-of-the-art. The code is available at
the following link: https://github.com/IdeGelis/torch-points3d-
SiameseKPConv.

2. Three new datasets for 3D change segmentation and classifica-
tion, publicly available to foster research in the field and ease
reproducibility.

After a presentation of related works in the following section, we
introduce in Section 3 both of our proposed networks, named Siamese
KPConv and its Cls variant, for 3D point clouds change segmentation
and classification, respectively. Then, in Section 4 we propose the three
new datasets: the synthetic Urb3DCD–V2 dataset as well as its classifi-
cation version and Actueel Hoogtebestand Nederland Change Detection
(AHN-CD), a change detection version of the real AHN dataset. Sec-
tion 4 also presents Change3D, a public dataset for change detection
at PCs scale. We conduct experiments on these datasets and report
the results in Section 5. Section 6 is devoted to discussion, and we
show that pre-training on simulated data greatly reduces the cost of
manual annotation on real data. Finally, we provide a conclusion and
perspectives in Section 7.

2. Related work

In the following section, we review existing works on 3D PCs change
detection. We also discuss some representative works on Siamese archi-
tectures and deep learning for 3D PCs.

2.1. 3D PCs change detection

Existing traditional methods dealing directly with 3D PC change
detection and categorization can be divided into two groups. Post-
classification methods firstly perform a semantic segmentation of each
PC and then compare obtained labels in order to retrieve changes
(Awrangjeb et al., 2015; Roynard et al., 2016; Siddiqui and Awrangjeb,
2017; Xu et al., 2015b; Dai et al., 2020; Voelsen et al., 2021). Con-
versely, pre-classification methods immediately highlight changes and
then classify them (Xu et al., 2015a). Both pre- and post-classification
methods embed errors coming from each step, thus leading to errors in
the final results (Xu et al., 2015b). To counter this issue, Tran et al.
(2018) suggest performing change detection and categorization in a
single step by using a Random Forest (RF) algorithm trained on hand-
crafted features related to point distribution, geometrical attributes,
terrain elevation, multi-target capability of LiDAR and a ‘‘between
date’’ feature.

While numerous works dealing with feature extraction, object detec-
tion, and segmentation in 3D PCs are available, the change detection
issue still remains largely unexplored with deep learning (de Gélis et al.,
2021b). Indeed, some studies apply Siamese or Feed-Forward with early
fusion (EF) networks on 2.5D DSM. The results obtained simply consist
of a binary classification at patch level (Zhang et al., 2019). Another
deep architecture has been reported in Ku et al. (2021), namely Siamese
Graph Convolutional Network (SiamGCN). This architecture is designed
in the context of the Shape Retrieval Challenge 2021 (SHREC21) on
Change3D dataset. This dataset was designed for multiple change classi-
fication in a complex street environment, i.e., it consists in recognizing
the type of change between two PCs centered on an urban furniture
(e.g., road signs). Thus, the expected result is provided at the PCs scale
corresponding to the multiple change classification task (Fig. 1b).

1 A preliminary version of this method was presented at the ISPRS Congress
2021 (de Gélis et al., 2021a).
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Figure 1. Overall framework of our simulator generating bi-temporal urban 3D point clouds.

This simulator has been developed in Python 3. For each obtained model, the ALS
simulation is performed thanks to a flight plan and ray tracing with the Visualization
ToolKit (VTK) Python library (https://vtk.org/, accessed on 2 July 2021). Figure 2 gives an
example of PCs at two time stamps generated by the simulator. The second PC is labeled
according to the changes between the two timestamps generated by the simulator. Each
simulation takes between a few seconds and half an hour according to model’s dimensions
and PC resolution. A simulation is computed on a single central processing unit (CPU).
Space between flight lines is computed in accordance with predefined parameters such as
resolution, covering between swaths and scanning angle. Following this computation, a
flight plan is set with a random starting position and direction of flight in order to introduce
more variability between two acquisitions. Moreover, Gaussian noise can be added to
simulate errors and lack of precision in LiDAR range measuring and scan direction.

(a) PC 1 (b) PC 2 (c) Labeled changes on PC 2

Figure 2. Sample PCs at two time stamps (a,b), with new buildings (blue), demolished buildings
(yellow) and unchanged objects (purple) in (c).

2.2. Evaluation Dataset

To conduct fair qualitative and quantitative evaluation of PC change detection tech-
niques, we have built some datasets based on LoD2 models of the first and second districts
of Lyon, France (https://geo.data.gouv.fr/datasets/0731989349742867f8e659b4d70b707
612bece89, accessed on 13 April 2020).For each simulation, buildings have been added or
removed to introduce changes into the model and to generate a large number of pairs of
PCs. We also considered various initial states across simulations, and randomly updated
the set of buildings from the first date through random additions or deletions of buildings
to create the second landscape. In addition, flight starting position and direction were
always set randomly. As a consequence, the acquisition patterns were not the same among
the PCs generated; thus, each acquisition may not have had exactly the same visible or
hidden parts. In order to illustrate various results of a given simulation over a same area,

Chapter 1 – Data for 3D change detection

point (hidden facades) are not at the same location in the two acquisitions.
In the following work, this dataset is referred to as Urb3DCD-V2.

Parameters
Urb3DCD-V2-1 Urb3DCD-V2-2

Urb3DCD-Cls
LiDAR low dens. MS

Both PCs PC 1 PC 2 Both PCs

Density (points/m2) 0.5 0.5 10 10
Noise range across track (→) 0.01 0.2 0.01 0.01
Noise range along track (→) 0 0.2 0 0

Noise scan direction (m) 0.05 1 0.05 0.05
Scan angle (→) →20 to 20 →20 to 20 →20 to 20

Overlapping (%) 10 10 10
Height of flight (m) 700 700 700

Annotation level Point Point PC

Table 1.4 – Acquisition configurations for the three sub-datasets of Urb3DCD-
V2 and Urb3DCD-Cls. Dens. stands for density.
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Fig. 5. Flowchart for change detection annotation of AHN pairs (a.k.a. AHN-CD) into
four classes: unchanged, new building, demolition and new clutter. CC stands for
connected component.

street environment (Ku et al., 2021). PCs are acquired thanks to LiDAR
sensors mounted on vehicles, and RGB information for each point is
also provided. In these 78 3D scenes, 741 urban objects, also called
points of interests, are identified by their coordinates and an associated
label (see Fig. 7 for a scene example). Urban objects correspond for
example to road signs, advertisements, statues or garbage bins. Each
point of interest is manually annotated into one of the following classes:
no change, removed, added, change or color change. The distribution of
annotated objects in the training and testing split is given in Table 3. As
it can be seen, one major constraint when using this dataset for learning
purposes is its highly imbalanced settings, thus making the training set
on less represented class very restricted.

As only 3D coordinates of the center of objects of interest are given,
further preparation of the dataset is left to the user. In particular, the
authors suggest extracting a vertical cylinder centered on the point of
interest. As far as our study is concerned, we decided to extract vertical

Fig. 6. Selected parts of AHN-CD dataset for training, validation and testing.

Fig. 7. Example of a scene from the Change3D dataset with the points of interests and
their corresponding labels.

cylinders of 3 m in radius, as done by the SiamGCN deep learning
method.

5. Experimental results

In the following section, we present the experimental results of
our methods on both simulated and real datasets. Before entering into
detail, let us first introduce the experimental protocol.

5.1. Protocol

To compare our approach with typical change detection techniques,
we first compare our method for change segmentation with a tradi-
tional machine learning approach based on the Random Forest (RF)
model and trained using handcrafted features proposed by Tran et al.
(2018). We consider this technique as representative of the state-of-
the-art since it obtains the best results for change detection at 3D point
level on Urb3DCD dataset (de Gélis et al., 2021b). We re-implemented
feature extraction of all features of Tran et al. (2018) except those using
LiDAR’s multi-target capability because Urb3DCD does not contain such
information. As mentioned above, to the best of our knowledge, there
is no deep learning method for change detection operating directly on
3D PCs. Nevertheless, we have designed two deep learning baselines
illustrating the current performances of existing networks for change
detection. Inspired by the work on 2D images by Daudt et al. (2018)
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with rigid or deformable kernels. In the rigid case, kernel points are
distributed in order to be as far as possible from each other. In the
deformable case, positions of kernel points are adapted to the PC. In
fact, a local shift of each kernel point is learned by the network to adapt
to the scene. In practice, deformable kernels considerably increase the
number of training parameters and give even worst results than rigid
kernels in outdoor scenes where the variability is lower (Thomas et al.,
2019).

Let us now introduce the Siamese network based on KPConv pro-
posed in this paper.

3. 3D point cloud change detection

The following section describes the proposed methods for change
detection between bi-temporal 3D PCs whether at PC or points scale
(see Fig. 1). Based on the literature of change detection in 2D images
and on the state-of-the-art in deep learning for processing 3D PCs, we
propose a Siamese FCN with Kernel Point Convolution (KPConv). In
fact, standard 2D convolution involved in Siamese FCN (Daudt et al.,
2018) is not directly suitable for 3D PCs. We therefore combine Siamese
FCN with specific 3D PC convolutions, namely KPConv (Thomas et al.,
2019). Indeed, as pointed out in Section 2.3, KPConv is chosen because
of its high performances against the state-of-the-art and its intrinsic
compatibility with the Siamese framework. We recall the appealing
properties of KPConv over the well-established PointNet in our change
detection context, i.e., its ability to scale to large datasets and to deal
with different number of points from each of the input PCs.

3.1. Siamese KPConv network

To extend the Siamese principle to 3D PCs, we propose here to
embed the KPConv in a deep Siamese network, as presented in Fig. 2.
We detail here the different parts of our architecture. Both input PCs
will pass through encoders consisting of a stack of five layers containing
two convolutional blocks, the first one being ‘‘strided’’ except for the
first block.

Convolutions are performed here with KPConv presented in Sec-
tion 2.3. To mimic 2D ‘‘strided’’ convolutions, ‘‘strided’’ KPConv op-
erations reduce the number of points to compute features at different
scales. At each layer 𝜔, the cell size 𝜀𝜗𝜔 corresponding to the minimum
distance between two consecutive points is recursively defined as 𝜀𝜗𝜔 =
2ω𝜀𝜗𝜔ε1. As for the first layer, 𝜀𝜗0 is set according to the dataset density
and the level of detail in the changes we aim to retrieve. KPConv radius
𝜛 also depends on the layer and is set to 𝜛𝜔 = 2.5ω𝜀𝜗𝜔 . The decoder part
is composed of a stack of five layers holding a nearest upsampling and
concatenation stage and a unary convolution. The unary convolution
behaves like a fully connected layer. We can observe that encoder and
decoder architectures are very similar to KP-FCNN used for semantic
segmentation (Thomas et al., 2019).

Equivalently to a typical FCN with skip connections, the network
enables the passing of information between intermediate layers of the
encoder and the decoder. In Siamese networks however, a strategy
should be used to fuse data coming from both encoders. Daudt et al.
(2018) showed that a difference of features coming from both encoder
layers gives better results for change detection. The same conclusion is
made in SiamGCN (Ku et al., 2021): the difference of features leads to
more accurate results than concatenating both sets of features into the
decoder part. Inspired by these results, we concatenate the difference
of extracted features associated with the corresponding encoding scale
(see Fig. 2). In practice, computing such feature difference is not
obvious, since PCs do not contain the same number of points and are
not defined at the same positions, even in non-changed areas. To cope
with this issue, we compare each point of the second PC with its nearest
spatial point in the first PC. Thus, for two PCs ∱1 and ∱2, with their
corresponding features ∲1 and ∲2, the feature difference 𝜚 is computed

Fig. 2. Our Siamese KPConv network architecture. The Pseudo-Siamese version of the
network is the same without shared weights symbolized by dotted purple arrows.

between features 𝜍2𝜑 ϑ ∲2 of each point 𝛻2𝜑 ϑ ∱2 of the second PC and
features 𝜍1𝜔 ϑ ∲1 of the nearest point 𝛻1𝜔 ϑ ∱1. Thereby:

(∱1,∲1)𝜚 (∱2,∲2) = 𝜍2𝜑 ε 𝜍1𝜔⌋𝜔=argmin(⌈𝛻2𝜑ε𝛻1𝜔⌈) (4)

Within the encoder, ‘‘strided’’ convolutions sub-sample PCs at each
layer, leading us to perform nearest neighbor computation for the
feature difference each time the PC is sub-sampled.

Let us observe that while both our Siamese KPConv network and
the original KP-FCNN share the principle of embedding KPConv into
a deep neural network, they significantly differ to address their re-
spective tasks: semantic segmentation for KP-FCNN vs. multiple change
segmentation for our Siamese KPConv. Indeed, our model relies on two
encoders enabling to take two different PCs as input, before fusing the
encoded information through some subtraction layers.

The network takes as input the 3D point coordinates and, similarly
to state-of-the-art deep models for 3D PCs, is also flexible to any sup-
plementary input features such as Red-Green-Blue (RGB) information,
LiDAR intensity, etc. In practice, literature reports that there is no
systematic gain when using color information (Boulch, 2020). Fusion of
color and geometric information can lead to better results but remains
an open problem (especially when they come from two different data
sources) (Widyaningrum et al., 2021). Since this question is out-of-
scope of our study, we simply recommend following the usual practice
in the field (characterize each point by the geometric coordinates X,Y,Z
and any available supplementary features RGB, intensity, etc.) as early
done by the authors of PointNet (Qi et al., 2017a). These supplementary
features can be easily added as inputs by modifying the input dimension
of weights matrix of kernel points of the first layer.

We propose two versions of this network: encoder with shared or
unshared weights (the latter being equivalent to a pseudo-Siamese net-
work). Let us notice that even if weights are not shared in two encoders
of the Pseudo-Siamese version, other hyper-parameters remain similar.
Both will be evaluated in Section 5. Usually, pseudo-Siamese networks
are used when data to be compared come with different characteristics.

3.2. Siamese KPConv network for classification of change at PCs scale

In order to compare our proposed method to the state-of-the-art
which remains limited to PCs change classification, we built a second
version of Siamese KPConv dedicated to this task (see Fig. 1b), hence-
forth referred as Siamese KPConv Cls. The architecture is presented in
Fig. 3. It is composed of the same encoder part as in Siamese KPConv
network, except that a fully connected layer has been added at the end
of the last layer. Then, features coming from the last layer of each
encoder are fused through a difference based on nearest neighbor as
in the previous architecture, before these feature differences are given
as input to a fully connected layer. A global average pooling is done
in order to downscale to the global PC scale. Finally, after a last fully
connected layer, PC change classification results are obtained.

Notice that several configurations of this network have been empir-
ically tested to select the best architecture in terms of number of layers

SIAMESE KPCONV

Reuse successful recipes!
• Change detection = Siamese networks
• Point cloud processing = KPConv
• Change detection over point clouds 

= Siamese KPConv (2021, 2023)
• Extended to classification

/!\ Plagiarism? SiamKPConv (2023)
https://doi.org/10.1016/j.cag.2023.06.025

https://doi.org/10.1016/j.isprsjprs.2023.02.001
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Table 3
Class distribution for the Change3D training and testing splits. For each class, the number of samples along with the class
proportion (in %) is given.
Labels No change Removed Added Change Color change Total

Train set 351 (59.79%) 54 (9.20%) 100 (17.03%) 63 (10.73%) 19 (3.24%) 587
Test set 90 (58.44%) 25 (16.23%) 15 (9.74%) 17 (11.04%) 7 (4.55%) 154

or on 2.5D DSMs (Zhang et al., 2019), we consider DSMs extracted
from our PCs as input 2D matrices to train a fully connected Siamese
network (DSM-Siamese) and a fully connected network with early
fusion (DSM-FC-EF). These networks rely on usual 2D convolutions
performed on 2D rasterization of PCs. Architectures are similar to
those presented in Daudt et al. (2018). DSM-Siamese decoder relies on
features difference to gather information from both encoder branches.
2D results can be straightforwardly propagated back to original 3D
PCs to be compared with pure methods dealing with raw 3D PCs.
Finally, our proposed method as well as the DSM-Siamese one are both
tested using Siamese and Pseudo-Siamese networks, i.e., with shared or
unshared weights respectively, between Siamese branches. To evaluate
the variability of our results, all tests have been conducted at least three
times.

Concerning change classification, we propose to compare our Siam-
ese KPConv Cls with SiamGCN network (Ku et al., 2021). This siamese
network relies on graph convolution, in particular edge convolution
operator (EdgeConv) (Wang et al., 2019b). From input PCs, graphs are
constructed from the kNN connections. Thus, points form graph vertices
and edges are set according to kNN relationships. Conversely to our
method, the merging of the two branches of the Siamese network is
done after a max-pooling operation, thus it does not imply a point-to-
point subtraction of features. This is an important difference with our
Siamese KPConv Cls architecture. Finally, our method is also compared
on the Change3D dataset to Point Cloud Change Detection with Hierar-
chical Histograms (PoChaDeHH) and Hybrid Graph Inception Change
Detection (HGI-CD) algorithms. These two methods competed with
SiamGCN in SHREC21 challenge (Ku et al., 2021). PoChaDeHH is a
fully handcrafted method based on histogram clustering. HGI-CD relies
on both handcrafted and learned-based features. The learned-based part
relies on Graph Convolution Network (GCN). The handcrafted parts of
these two methods were specifically designed for the Change3D dataset
experiments and as such, cannot be applied to any other dataset, includ-
ing our Urb3DCDV2-Cls. Comparison with HGI-CD and PoChaDeHH are
then limited to the Change3D dataset.

As for quantitative parameters, for each class of change, the Inter-
section over Union (IoU) is reported. Since in change detection and
categorization datasets are in general largely imbalanced (i.e., most
data belong to the unchanged class despite this class not being the
most interesting one), we prefer to discard the overall accuracy or
precision scores that are not very indicative of method performance in
such settings. We therefore select the mean accuracy (mAcc) and the
mean of IoU over classes of changes (mIoU

𝜔𝜀) for reliable quantitative
assessment of the different methods.

5.2. Experimental settings

Similarly to the segmentation task in KPConv experiments, we do
not feed entire PCs to the network for computational reasons. Indeed,
the PCs are too large to be processed as a whole. Thus, Thomas et al.
(2019) have proposed to divide their dataset into small spherical sub-
clouds. In the context of urban PC change detection, we prefer to use
cylinders aligned to the vertical axis rather than spheres since the
vertical direction is of a different nature compared to the two horizontal
ones. By doing so, we also avoid empty sub-clouds (note that the centers
of the cylinders are the same for both dates). Indeed, if a sphere is
centered at the top of a building that does not include any ground point,
and if this building is demolished, the sphere obtained in the second PC
will be free of points and this will disturb the training of the network.

Fig. 8. Example of input cylinders with changes between the first and the second
cylinders (buildings have been added). The two input PCs (a–b) are colorized based
on their relative elevation. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

To illustrate this, examples of two input cylinders are given in Fig. 8.
Let us consider a point in the center of the building’s roof (center of
Fig. 8b). In this case, the corresponding sphere at the second date could
have been empty. Indeed, depending on the radius, no ground points
would have been visible. By taking cylinders, we ensure that each of the
sub-clouds contains ground. At testing, cylinders are chosen regularly
with some overlap to ensure that all points are seen at least once
by the network. For points seen several times, predicted probabilities
are averaged to decide the final label, similarly to voting schemes. It
should be outlined that classes are largely imbalanced in the change
detection problem. As a matter of fact, the unchanged area represents
up to 98% of points according to datasets. Thus, during training,
the centers of the cylinders are chosen thanks to a weighted random
drawing. Weights are set as a function of dataset balance, in order to
set the probability higher for smaller classes. This allows our network
to regularly observe changes during the training phase. Moreover, we
perform data augmentation through both random rotation around the
vertical axis for each selected cylinder and random Gaussian noise at
point scale. Notice that a random rotation angle is selected for each
pair of cylinders and to keep valid the registration, the same rotation
angle is applied both PCs in the pair.

As mentioned in Section 3.1, a first sub-sampling rate (𝜗𝜛0) has to
be chosen to design the network. In practice, this has been set to 1 m
for experiments on a simulated dataset. We have empirically set the
radius of cylinders to 50 m, following the recommendation of KPConv
authors who set the radius to 50 ω 𝜗𝜛0. For the real dataset AHN-CD,
as density is higher than in Urb3DCD–V2 datasets, we set 𝜗𝜛0 to 0.5 m,
implying cylinders of 25 m in radius. According to our experiments, a
compromise should be made to use cylinders as large as possible to take
into account enough context and the sub-sampling rate, to avoid losing
too many available points. Concerning Urb3DCD-Cls and Change3D,
inputs are already cylinders of 15 m and 3 m in radius. Thereby, only
the first sub-sampling rate should be chosen to run experiments with
our Siamese KPConv Cls architecture. It has been set respectively to
0.3 m and 0.06 m for Urb3DCD-Cls and Change3D dataset. As a matter
of fact, the scales of changes to retrieve are different and 𝜗𝜛0 has to be
adapted to expected changes.

Parameter settings (summarized in Table 4) have been largely influ-
enced by the original KPConv proposed values. We thus use a Stochastic
Gradient Descent (SGD) with a momentum of 0.98, to minimize a
point-wise Negative Log Likelihood (NLL) loss, given by the following
equation:

𝜚𝜍𝜍(𝜑𝛻, 𝜑𝜕) = ε(𝜑𝛻 log(𝜑𝜕) + (1 ε 𝜑𝛻) log(1 ε 𝜑𝜕)) (5)

where 𝜑𝛻 and 𝜑𝜕 correspond to the target label and the predicted label,
respectively. As prediction is expected at point scale on the second

Scalability?
Batches = cylinders

https://doi.org/10.1016/j.cag.2023.06.025
https://doi.org/10.1016/j.isprsjprs.2023.02.001
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Fig. 9. Visual change detection results on Urb3DCD–V2 low density LiDAR sub-dataset: (a–b) the two input point clouds; (c) Ground truth: simulated changes; (d) RF (Tran et al.,
2018) results; (e) DSM-FC-EF (adaptation of Daudt et al. (2018) FC-EF to DSM inspired by Zhang et al. (2019) works) results; (f) our results with Siamese KPConv. Region of
interest specifically discussed in the text is highlighted with an ellipse.

particular, results are very impressive for mobile objects. To explain
this, with an average density of 0.5 points/m2, mobile objects are
represented by only a few 3D points. This leads to very low scores
for DSM-based methods since the rasterization process implies a loss of
information that is even more visible on small objects. The vegetation
growth class seems to be the hardest to predict for all methods. This
is logical, since this category is more related to an evolution than an
abrupt change. Furthermore, on vegetation, points are not regularly
distributed on the surface of the objects, as LiDAR can penetrate the
foliage of trees. More generally, our results (9f–10f) are consistent with
the ground truth (9c–10c). Conversely, the RF method (9d–10d) gives
less convincing results with several confusions between classes, e.g., in
the foreground low building it mixes new building and new vegetation
classes in Fig. 9d (see the ellipse showing the region of interest). In
Fig. 10, some occlusions are shown. While they are very common in
processing 3D PCs data especially in dense urban areas, they remain
an important challenge for change detection methods. Indeed, as can be
observed when comparing both PCs (Fig. 10(a–b)), hidden facades are
not in the same location between the two epochs because of different
positions of the sensor during the acquisition. When looking at results
of different methods, deep learning based approaches bring better
results in these particular areas while the RF algorithm on handcrafted
features mix with new building class the building facades that appear
only in the second PC (because of occlusion) (see the ellipse showing
the region of interest in Fig. 10d). As our method learns deep features
from raw 3D PCs, it seems to be able to understand objects as a whole.
This ability probably comes from the different scales (or network lay-
ers) in the feature extraction process. DSM-based methods also provide

Table 6
General results in % on Urb3DCD–V2 low density LiDAR dataset. DSM-based methods
are adaptation of Daudt et al. (2018) networks to DSM inspired by Zhang et al. (2019)
works.
Method mAcc mIoU

𝜔𝜀

Siamese KPConv (ours) 91.21 ± 0.68 80.12 ± 0.02
Pseudo-Siamese KPConv (ours) 91.31 ± 2.34 77.80 ± 1.69

DSM-Siamese 80.91 ± 5.29 57.41 ± 3.77
DSM-Pseudo-Siamese 75.17 ± 10.03 55.30 ± 8.17
DSM-FC-EF 81.47 ± 0.55 56.98 ± 0.79
RF (Tran et al., 2018) 65.82 ± 0.05 52.37 ± 0.10

accurate results in hidden facades. Indeed, the prediction is made only
on roofs of buildings by definition of DSM, so predicting no change on
the roof leads to the whole facade below to be marked as unchanged
as well in the 3D re-projection step. However, DSM-based methods
face some problems with occlusions due to building shadows (as no
point is acquired resulting in empty pixels in the rasterization) that
are generally filled using an interpolation (thus implying imprecision
in building edges). When looking at qualitative results of DSM-FC-EF
method (Fig. 10e), one can observe that small roofs details are confused
with mobile objects. Indeed, this method rather identifies cars than
roofs probably because these details are similar to cars on this low
density dataset.

Quantitative results for the MS dataset are presented in Tables 7
and 9. The Siamese KPConv method with shared weights does not
outperform state-of-the-art as much as the pseudo-Siamese KPConv
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Fig. 10. Visual change detection results on Urb3DCD–V2 low density LiDAR sub-dataset in an area containing occlusions: (a–b) the two input point clouds; (c) Ground truth:
simulated changes; (d) RF (Tran et al., 2018) results; (e) DSM-FC-EF (adaptation of Daudt et al. (2018) FC-EF to DSM inspired by Zhang et al. (2019) works) results; (f) our results
with Siamese KPConv. Regions of interest specifically discussed in the text are highlighted with ellipses.

does. This was expected, since even if both pieces of data are 3D PCs,
they embed very different characteristics. Thus, unshared weights allow
each branch of the encoder to specialize in extracting features from
one type of sensor. Even for the unshared weights configuration of
our method (Pseudo-Siamese KPConv), the results are lower than for
the previous dataset. However, the same gap between methods can
be seen: Pseudo-Siamese KPConv still improves mIoU

𝜔𝜀 of about 30%
versus the RF method. Among DSM-based methods, early fusion obtains
the best results. This is consistent with results from de Gélis et al.
(2021b), especially for the MS sub-dataset. As described previously,
the number of ground truth labels in the DSM and 3D PCs databases
are substantially different because of the rasterization process. Hence,
probably due to over-fitting problems, it explains why DSM-Pseudo-
Siamese is worse than DSM-Siamese even in the MS configuration,
conversely to Siamese KPConv results. Furthermore, we believe that in
3D PCs the difference of sensor is more visible than in 2D rasterization.
Indeed, in DSMs most differences are seen at edges of buildings which
are very distinct in the noiseless DSM while blurry in the noisy DSM.
Even if original PCs are very different in terms of quality, they are
converted to more similar 2D data during the rasterization process since
the same grid size is chosen. Still, the noise present in the first point
cloud leads to a noisy DSM, especially on the building edges. Overall,
the high similarity between the two input DSMs makes relevant the
use of DSM-Siamese with shared weights. Thus, similar filters (and
similar weights) can be used to identify changes among pairs of DSMs,
conversely to pairs of PCs. Let us note that when applied on 2D images,
pseudo-Siamese networks are used mostly in case of pairs of images
coming from different sensors, e.g., change detection between optical
and SAR inputs (Touati et al., 2020; Zhou et al., 2021).

It is worth noting that the quality of data seems to impact less DSM
based results when comparing low density and MS results in Tables 6

Table 7
General results in % on Urb3DCD–V2 MS dataset. DSM-based methods are adaptation
of Daudt et al. (2018) networks to DSM inspired by Zhang et al. (2019) works.
Method mAcc mIoU

𝜔𝜀

Siamese KPConv (ours) 73.24 ± 5.7 58.55 ± 4.86
Pseudo-Siamese KPConv (ours) 87.86 ± 0.94 74.48 ± 0.59

DSM-Siamese 69.91 ± 6.18 49.14 ± 4.92
DSM-Pseudo-Siamese 66.50 ± 10.82 46.60 ± 10.13
DSM-FC-EF 81.25 ± 1.86 55.59 ± 1.84
RF (Tran et al., 2018) 62.20 ± 0.02 46.81 ± 0.01

and 7, which is in our mind not so surprising because the rasterization
process tends to smooth original data by fusing several points into a
single pixel.

Concerning per-class results, the same trend as for the low density
LiDAR dataset is observed in Table 9. When looking at qualitative
results in Figs. 11 and 12, the missing vegetation class is almost
always mixed with demolition in RF results (11d–12d). Changed objects
boundaries are not precise in DSM-FC-EF results (11e–12e) due to the
rasterization process. Despite the difference of quality between the two
input PCs (11(a–b)–12(a–b)), our method seems capable of retrieving
and classifying changes correctly even for challenging classes such as
vegetation growth. Looking at occlusions visible in Fig. 12, we can draw
the same conclusion as already made on the Urb3CDCD-V2 low density
dataset.

5.3.2. Semantic change on real dataset
Results on AHN-CD dataset are presented in Table 10. As in previous

experiments, Siamese KPConv networks provide better results than
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Fig. 12. Visual change detection results on Urb3DCD–V2 MS sub-dataset in an area containing occlusions: (a–b) the two input point clouds; (c) Ground truth: simulated changes;
(d) RF (Tran et al., 2018) results; (e) DSM-FC-EF (adaptation of Daudt et al. (2018) FC-EF to DSM inspired by Zhang et al. (2019) works) results; (f) our results with Pseudo-Siamese
KPConv. Regions of interest specifically discussed in the text are highlighted with ellipses.

Table 10
Results on AHN-CD dataset given in %. DSM-based methods are adaptation of Daudt et al. (2018) networks to DSM inspired by Zhang et al. (2019) works.
Method mAcc mIoU

𝜔𝜀
Per class IoU

Unchanged New building Demolition New clutter

Siamese KPConv (ours) 81.86 ± 0.72 59.93 ± 0.14 95.94 ± 0.06 83.19 ± 1.54 56.05 ± 1.74 40.53 ± 0.56
Pseudo-Siamese KPConv (ours) 84.44 ± 1.24 52.32 ± 4.31 92.96 ± 1.34 76.54 ± 11.39 43.67 ± 1.88 36.76 ± 2.95

DSM-Siamese 62.85 ± 1.13 33.18 ± 3.56 88.58 ± 2.53 60.95 ± 5.54 18.04 ± 1.59 20.54 ± 3.59
DSM-Pseudo-Siamese 67.04 ± 0.77 41.40 ± 0.62 92.25 ± 0.11 73.26 ± 0.68 22.91 ± 1.82 28.02 ± 0.73
DSM-FC-EF 74.98 ± 0.80 44.73 ± 2.16 92.95 ± 1.49 74.21 ± 0.37 33.68 ± 6.84 26.32 ± 0.04
RF (Tran et al., 2018) 50.11 ± 0.01 28.56 ± 0.02 93.13 ± 0.00 70.5 ± 0.21 2.04 ± 0.04 13.27 ± 0.02

takes about one day on AHN-CD dataset with 6000 cylinders in the
training set and 500 in the validation set.

5.3.3. Change classification results
Results regarding the change classification task for both synthetic

and real datasets are presented in Table 11 and Table 12, respectively.
Our architecture is reaching some quite reliable results for each class
of the Urb3DCD-Cls dataset. It also strongly outperforms SiamGCN.
When looking at Table 12 for the Change3D dataset, results of Siamese
KPConv Cls are still higher than other methods except for classes ‘‘no
change’’ and ‘‘color change’’. Indeed, on these two classes, the hand-
crafted PoChaDeHH method is performing better. As shown in Table 3
the ‘‘color change’’ class is under-represented (3.24% of the training
set), surely explaining lower scores of methods requiring a training
phase (Siamese KPConv Cls, SiamGCN and HGI-CD). Furthermore, this
class is the only class representing colorimetric changes instead of
geometric ones. Even if it outperforms other methods on the ‘‘change’’
class, Siamese KPConv Cls leads to an unsatisfactory IoU score and has

an important variation over different training runs. This class stands
for slight changes in a remaining object, therefore the scale of change
is different for this class compared to ‘‘removed’’ or ‘‘added’’ ones where
the entire object changes, making the change detection task harder.
Finally, when looking at global results (mAcc and mIoU), one can
observe that our method outperforms state-of-the-art methods for the
change classification task.

6. Discussion

In the following section, we focus on the quality of AHN-CD and we
discuss the transfer learning capacity of the network.

6.1. AHN-CD quality assessment

As seen in Table 10, the scores of all methods are lower with
AHN-CD than scores obtained on Urb3DCD–V2 datasets. Despite the
fact that it might be more difficult to perform change detection and
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Fig. 12. Visual change detection results on Urb3DCD–V2 MS sub-dataset in an area containing occlusions: (a–b) the two input point clouds; (c) Ground truth: simulated changes;
(d) RF (Tran et al., 2018) results; (e) DSM-FC-EF (adaptation of Daudt et al. (2018) FC-EF to DSM inspired by Zhang et al. (2019) works) results; (f) our results with Pseudo-Siamese
KPConv. Regions of interest specifically discussed in the text are highlighted with ellipses.

Table 10
Results on AHN-CD dataset given in %. DSM-based methods are adaptation of Daudt et al. (2018) networks to DSM inspired by Zhang et al. (2019) works.
Method mAcc mIoU

𝜔𝜀
Per class IoU

Unchanged New building Demolition New clutter

Siamese KPConv (ours) 81.86 ± 0.72 59.93 ± 0.14 95.94 ± 0.06 83.19 ± 1.54 56.05 ± 1.74 40.53 ± 0.56
Pseudo-Siamese KPConv (ours) 84.44 ± 1.24 52.32 ± 4.31 92.96 ± 1.34 76.54 ± 11.39 43.67 ± 1.88 36.76 ± 2.95

DSM-Siamese 62.85 ± 1.13 33.18 ± 3.56 88.58 ± 2.53 60.95 ± 5.54 18.04 ± 1.59 20.54 ± 3.59
DSM-Pseudo-Siamese 67.04 ± 0.77 41.40 ± 0.62 92.25 ± 0.11 73.26 ± 0.68 22.91 ± 1.82 28.02 ± 0.73
DSM-FC-EF 74.98 ± 0.80 44.73 ± 2.16 92.95 ± 1.49 74.21 ± 0.37 33.68 ± 6.84 26.32 ± 0.04
RF (Tran et al., 2018) 50.11 ± 0.01 28.56 ± 0.02 93.13 ± 0.00 70.5 ± 0.21 2.04 ± 0.04 13.27 ± 0.02

takes about one day on AHN-CD dataset with 6000 cylinders in the
training set and 500 in the validation set.

5.3.3. Change classification results
Results regarding the change classification task for both synthetic

and real datasets are presented in Table 11 and Table 12, respectively.
Our architecture is reaching some quite reliable results for each class
of the Urb3DCD-Cls dataset. It also strongly outperforms SiamGCN.
When looking at Table 12 for the Change3D dataset, results of Siamese
KPConv Cls are still higher than other methods except for classes ‘‘no
change’’ and ‘‘color change’’. Indeed, on these two classes, the hand-
crafted PoChaDeHH method is performing better. As shown in Table 3
the ‘‘color change’’ class is under-represented (3.24% of the training
set), surely explaining lower scores of methods requiring a training
phase (Siamese KPConv Cls, SiamGCN and HGI-CD). Furthermore, this
class is the only class representing colorimetric changes instead of
geometric ones. Even if it outperforms other methods on the ‘‘change’’
class, Siamese KPConv Cls leads to an unsatisfactory IoU score and has

an important variation over different training runs. This class stands
for slight changes in a remaining object, therefore the scale of change
is different for this class compared to ‘‘removed’’ or ‘‘added’’ ones where
the entire object changes, making the change detection task harder.
Finally, when looking at global results (mAcc and mIoU), one can
observe that our method outperforms state-of-the-art methods for the
change classification task.

6. Discussion

In the following section, we focus on the quality of AHN-CD and we
discuss the transfer learning capacity of the network.

6.1. AHN-CD quality assessment

As seen in Table 10, the scores of all methods are lower with
AHN-CD than scores obtained on Urb3DCD–V2 datasets. Despite the
fact that it might be more difficult to perform change detection and

ISPRS Journal of Photogrammetry and Remote Sensing 197 (2023) 274–291

287

I. de Gélis et al.

Table 11
Change classification results on Urb3DCD-Cls synthetic dataset. Results are given in %. Veg. stands for vegetation.
Method mAcc mIoU Per class IoU

No change New building Demolition New veg. Missing veg.

Siamese KPconv Cls (ours) 88.75 ± 1.59 80.30 ± 1.58 82.10 ± 0.98 73.65 ± 1.56 80.50 ± 1.60 85.81 ± 1.64 79.45 ± 2.87
SiamGCN (Ku et al., 2021) 76.45 ± 1.14 57.27 ± 0.52 68.63 ± 0.97 61.43 ± 0.79 70.29 ± 1.08 38.31 ± 0.59 47.69 ± 0.92

Table 12
Change classification results on Change3D real dataset. PoChaDeHH, HGI-CD, and SiamGCN have been introduced in Ku et al. (2021). For PoChaDeHH and HGI-CD, results are
directly taken from the original publication. For SiamGCN, the public code has been used to retrain the model on a valid train/val/test split. Results are given in %.
Method mAcc mIoU Per class IoU

No change New building Demolition New veg. Missing veg.

Siamese KPconv Cls (ours) 49.64 ± 1.35 34.64 ± 1.18 55.35 ± 2.80 43.41 ± 3.71 47.93 ± 4.74 19.85 ± 9.25 6.67 ± 11.55

PoChaDeHH (Ku et al., 2021) 45.18 30.22 61.06 31.58 40.00 4.17 14.29
HGI-CD (Ku et al., 2021) 25.82 17.17 55.30 16.28 14.29 0.00 0.00
SiamGCN (Ku et al., 2021) 32.04 ± 6.49 19.18 ± 1.03 42.56 ± 1.78 24.33 ± 0.83 11.27 ± 3.07 14.00 ± 2.19 3.70 ± 4.94

Fig. 13. Qualitative results on AHN-CD dataset. See the discussion regarding the
quality of the GT. Regions of interest specifically discussed in the text is highlighted
with ellipses.

categorization on these real data, our results seem quite coherent with
visible changes when comparing AHN3 and AHN4, as shown in Fig. 13.
In our opinion, the main difficulty comes from change annotation. First
of all, in order to obtain our annotations, we performed an automatic
comparison of the two PCs, leading to a lot of mis-classifications, since
objects may have changed even if the label has not. To illustrate this,
one can focus on the left side of the house in Fig. 13. With manual
processing, the small garden would have been annotated as new clutter
because it is totally different to the vegetation existing previously
in AHN3 (see region of interest in Fig. 13a), yielding difficulties in
practice. Another example is given in Fig. 14 where we can observe
a lot of new buildings omitted by the ground truth. Indeed, in AHN3
the whole surface was covered by a glasshouse marked as a building in
the AHN classification. Therefore, in the label comparison step of our
annotation processing chain, new buildings were overlooked. As can be
seen, our method correctly predicted the majority of all new buildings.

Another difficulty comes with the clutter class of AHN, which is a mix of
various types of objects, ranging from all kinds of vegetation to cars or
rubble. The boundary between the clutter and building classes in AHN
annotation is not very clear in some cases. For example when dealing
with garden sheds, as visible on the right side of the house in Fig. 13,
the shed is marked as clutter in the annotation whereas it is sometimes
predicted as new building or even unchanged because of the glasshouse
present in the older PC as explained before (Fig. 14). Also, notice that
the AHN classification of the term ‘building’ itself does not have exactly
the same definition for the building class for AHN3 and for AHN4.

Another remark should be made on the demolition class. Indeed,
this class is largely under-represented: it contains only 0.2% of points
in the training dataset whereas the ‘unchanged’, ‘new building’ and
‘new clutter’ classes represent 87.83%, 7.84% and 4.41% respectively.
This undoubtedly explains the lower scores for demolition, even if
we adapted the training stage to alleviate this issue. An example of
demolition omitted by our network is visible on the ground replacing
the demolished glasshouse of Fig. 14d (see region of interest on the
right side). However, this example might be a difficult situation since in
the older PC, the glasshouse was mapped with both points of the ground
and on its roof, since the LiDAR signal was partly reflected on the
glass surface, and partly passing through it and reflected on the ground.
Indeed, the demolition is well predicted in easier configurations such
as on the left side of Fig. 14.

Despite this imperfect annotation, we thought it was interesting
to perform some tests on such real data. However, figures should
be read with caution and analyzed in comparison to other methods.
Nevertheless, let us point out that the visual results of our method
seem very promising. In particular, the fact that our method provides
results in some cases closer to reality than the ground truth, as seen in
Fig. 14, highlights the robustness against mislabeled data. Therefore,
it would be interesting to possess a method capable of indicating the
confidence level of the prediction, such as Bayesian deep learning
methods. Indeed, it has been shown that some errors in the ground
truth can be highlighted by looking at the confidence level (Dechesne
et al., 2021).

Furthermore, a sub-part of the AHN-CD test set has been manually
annotated to guarantee the consistency in area where the ground truth
is entirely reliable. The sub-area has been chosen to be representative
of each class of change. It contains a total of 707,199 points distributed
as follows: 60.95% ‘unchanged’, 29.06% ‘new building’, 7.04% ‘demo-
lition’ and 2.95% ‘new clutter’. The selected area is about 12,400 m2.
Results are given in Table 13. Again, our methods lead to better results
than other state-of-the-art methods based on handcrafted features or
DSM. In particular, scores are very satisfying on unchanged, new build-
ing and demolition classes. Concerning the new clutter class, results are
less impressive, but still better than other methods. However, as stated
before, this class is a mix of several types of objects. Notice that these
results are obtained with the network trained on the AHN-CD dataset
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Fig. 5. Flowchart for change detection annotation of AHN pairs (a.k.a. AHN-CD) into
four classes: unchanged, new building, demolition and new clutter. CC stands for
connected component.

street environment (Ku et al., 2021). PCs are acquired thanks to LiDAR
sensors mounted on vehicles, and RGB information for each point is
also provided. In these 78 3D scenes, 741 urban objects, also called
points of interests, are identified by their coordinates and an associated
label (see Fig. 7 for a scene example). Urban objects correspond for
example to road signs, advertisements, statues or garbage bins. Each
point of interest is manually annotated into one of the following classes:
no change, removed, added, change or color change. The distribution of
annotated objects in the training and testing split is given in Table 3. As
it can be seen, one major constraint when using this dataset for learning
purposes is its highly imbalanced settings, thus making the training set
on less represented class very restricted.

As only 3D coordinates of the center of objects of interest are given,
further preparation of the dataset is left to the user. In particular, the
authors suggest extracting a vertical cylinder centered on the point of
interest. As far as our study is concerned, we decided to extract vertical

Fig. 6. Selected parts of AHN-CD dataset for training, validation and testing.

Fig. 7. Example of a scene from the Change3D dataset with the points of interests and
their corresponding labels.

cylinders of 3 m in radius, as done by the SiamGCN deep learning
method.

5. Experimental results

In the following section, we present the experimental results of
our methods on both simulated and real datasets. Before entering into
detail, let us first introduce the experimental protocol.

5.1. Protocol

To compare our approach with typical change detection techniques,
we first compare our method for change segmentation with a tradi-
tional machine learning approach based on the Random Forest (RF)
model and trained using handcrafted features proposed by Tran et al.
(2018). We consider this technique as representative of the state-of-
the-art since it obtains the best results for change detection at 3D point
level on Urb3DCD dataset (de Gélis et al., 2021b). We re-implemented
feature extraction of all features of Tran et al. (2018) except those using
LiDAR’s multi-target capability because Urb3DCD does not contain such
information. As mentioned above, to the best of our knowledge, there
is no deep learning method for change detection operating directly on
3D PCs. Nevertheless, we have designed two deep learning baselines
illustrating the current performances of existing networks for change
detection. Inspired by the work on 2D images by Daudt et al. (2018)
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Fig. 14. Qualitative results on AHN-CD dataset, illustrating some ground truth errors contrasting with relevant prediction by our method. Regions of interest specifically discussed
in the text are highlighted with ellipses.

Table 13
Results (given in %) on the AHN-CD dataset sub-part that has been manually annotated. DSM-based methods are adaptation of Daudt et al. (2018) networks to DSM inspired by
Zhang et al. (2019) works.
Method mAcc mIoU

𝜔𝜀
Per class IoU

Unchanged New building Demolition New clutter

Siamese KPConv (ours) 85.65 ± 1.55 72.95 ± 2.05 89.75 ± 2.18 82.77 ± 5.38 86.44 ± 0.88 46.65 ± 0.16
Pseudo-Siamese KPConv (ours) 87.87 ± 1.89 69.33 ± 1.99 88.90 ± 1.89 86.93 ± 5.32 84.01 ± 0.87 37.08 ± 2.85

DSM-Siamese 50.87 ± 1.15 30.96 ± 2.48 77.10 ± 1.51 76.77 ± 0.79 4.91 ± 8.33 11.20 ± 1.71
DSM-Pseudo-Siamese 70.71 ± 5.09 48.85 ± 7.03 78.00 ± 5.09 75.32 ± 8.59 47.46 ± 11.92 23.76 ± 0.56
DSM-FC-EF 71.47 ± 1.43 45.57 ± 0.98 70.77 ± 1.13 90.32 ± 0.61 30.58 ± 1.76 15.81 ± 0.81
RF (Tran et al., 2018) 47.94 ± 0.02 29.45 ± 0.02 78.24 ± 0.00 74.64 ± 0.03 0.00 ± 0.00 13.72 ± 0.06

without manual correction of the ground truth. Hence, it demonstrates
the robustness of our method to errors in the training database.

To improve change classification results, it would also be interesting
to add RGB information or LiDAR intensity, available in the AHN data,
as input to the network.

6.2. Transfer learning

In the following section, we aim at assessing the transfer capacity
of our method compared to others, from simulated to real datasets. The
goal is to explore the ability of a model trained on a specific dataset to
generalize data of various types.

In Table 14, we report the transfer results between a training on
Urb3DCD–V2 MS sub-dataset and a test on the low-density LiDAR
sub-dataset. Notice that no retraining has been done to adapt to the
other dataset. As expected, results are worse than when the training is
performed on a training set containing the same types of PCs as the
test set. However, our Pseudo-Siamese KPConv still gives better results
than other methods when observing change classes corresponding to
mIoU𝜔𝜀. Notice that the generalization capacity is not the same accord-
ing to the classes. Indeed, low scores are obtained on new vegetation

or vegetation growth, whereas missing vegetation obtains very similar
results to the without transfer method. We have not included our
Siamese KPConv in this comparison since its training on the MS sub-
dataset is not reliable (see Table 7) and therefore the pre-trained
network would lead to non-reliable features. One can note that scores
obtained with Pseudo-Siamese KPConv trained on the MS dataset are
slightly higher than those obtained when training an RF algorithm
directly on the low-density LiDAR dataset. In particular, it allows us
to obtain more reliable results than the RF method without transfer for
unchanged, vegetation growth, missing vegetation and mobile objects
classes (see Table 8). Table 14 recalls the poor generalization capacity
of the RF method, even though it requires a smaller training set than
deep learning methods (de Gélis et al., 2021b).

The issue of the size of the training set is crucial, since automatic
data annotation is tricky (see Section 6.1) and manual annotation is
time-consuming.

To deal with this issue, an idea would be to pre-train a network
on simulated data and then fine-tune it on a few examples of real
data. In order to assess the behavior of our network in such a small
training dataset configuration, we trained the network from scratch
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Fig. 14. Qualitative results on AHN-CD dataset, illustrating some ground truth errors contrasting with relevant prediction by our method. Regions of interest specifically discussed
in the text are highlighted with ellipses.

Table 13
Results (given in %) on the AHN-CD dataset sub-part that has been manually annotated. DSM-based methods are adaptation of Daudt et al. (2018) networks to DSM inspired by
Zhang et al. (2019) works.
Method mAcc mIoU

𝜔𝜀
Per class IoU

Unchanged New building Demolition New clutter

Siamese KPConv (ours) 85.65 ± 1.55 72.95 ± 2.05 89.75 ± 2.18 82.77 ± 5.38 86.44 ± 0.88 46.65 ± 0.16
Pseudo-Siamese KPConv (ours) 87.87 ± 1.89 69.33 ± 1.99 88.90 ± 1.89 86.93 ± 5.32 84.01 ± 0.87 37.08 ± 2.85

DSM-Siamese 50.87 ± 1.15 30.96 ± 2.48 77.10 ± 1.51 76.77 ± 0.79 4.91 ± 8.33 11.20 ± 1.71
DSM-Pseudo-Siamese 70.71 ± 5.09 48.85 ± 7.03 78.00 ± 5.09 75.32 ± 8.59 47.46 ± 11.92 23.76 ± 0.56
DSM-FC-EF 71.47 ± 1.43 45.57 ± 0.98 70.77 ± 1.13 90.32 ± 0.61 30.58 ± 1.76 15.81 ± 0.81
RF (Tran et al., 2018) 47.94 ± 0.02 29.45 ± 0.02 78.24 ± 0.00 74.64 ± 0.03 0.00 ± 0.00 13.72 ± 0.06

without manual correction of the ground truth. Hence, it demonstrates
the robustness of our method to errors in the training database.

To improve change classification results, it would also be interesting
to add RGB information or LiDAR intensity, available in the AHN data,
as input to the network.

6.2. Transfer learning

In the following section, we aim at assessing the transfer capacity
of our method compared to others, from simulated to real datasets. The
goal is to explore the ability of a model trained on a specific dataset to
generalize data of various types.

In Table 14, we report the transfer results between a training on
Urb3DCD–V2 MS sub-dataset and a test on the low-density LiDAR
sub-dataset. Notice that no retraining has been done to adapt to the
other dataset. As expected, results are worse than when the training is
performed on a training set containing the same types of PCs as the
test set. However, our Pseudo-Siamese KPConv still gives better results
than other methods when observing change classes corresponding to
mIoU𝜔𝜀. Notice that the generalization capacity is not the same accord-
ing to the classes. Indeed, low scores are obtained on new vegetation

or vegetation growth, whereas missing vegetation obtains very similar
results to the without transfer method. We have not included our
Siamese KPConv in this comparison since its training on the MS sub-
dataset is not reliable (see Table 7) and therefore the pre-trained
network would lead to non-reliable features. One can note that scores
obtained with Pseudo-Siamese KPConv trained on the MS dataset are
slightly higher than those obtained when training an RF algorithm
directly on the low-density LiDAR dataset. In particular, it allows us
to obtain more reliable results than the RF method without transfer for
unchanged, vegetation growth, missing vegetation and mobile objects
classes (see Table 8). Table 14 recalls the poor generalization capacity
of the RF method, even though it requires a smaller training set than
deep learning methods (de Gélis et al., 2021b).

The issue of the size of the training set is crucial, since automatic
data annotation is tricky (see Section 6.1) and manual annotation is
time-consuming.

To deal with this issue, an idea would be to pre-train a network
on simulated data and then fine-tune it on a few examples of real
data. In order to assess the behavior of our network in such a small
training dataset configuration, we trained the network from scratch
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Table 11
Change classification results on Urb3DCD-Cls synthetic dataset. Results are given in %. Veg. stands for vegetation.
Method mAcc mIoU Per class IoU

No change New building Demolition New veg. Missing veg.

Siamese KPconv Cls (ours) 88.75 ± 1.59 80.30 ± 1.58 82.10 ± 0.98 73.65 ± 1.56 80.50 ± 1.60 85.81 ± 1.64 79.45 ± 2.87
SiamGCN (Ku et al., 2021) 76.45 ± 1.14 57.27 ± 0.52 68.63 ± 0.97 61.43 ± 0.79 70.29 ± 1.08 38.31 ± 0.59 47.69 ± 0.92

Table 12
Change classification results on Change3D real dataset. PoChaDeHH, HGI-CD, and SiamGCN have been introduced in Ku et al. (2021). For PoChaDeHH and HGI-CD, results are
directly taken from the original publication. For SiamGCN, the public code has been used to retrain the model on a valid train/val/test split. Results are given in %.
Method mAcc mIoU Per class IoU

No change New building Demolition New veg. Missing veg.

Siamese KPconv Cls (ours) 49.64 ± 1.35 34.64 ± 1.18 55.35 ± 2.80 43.41 ± 3.71 47.93 ± 4.74 19.85 ± 9.25 6.67 ± 11.55

PoChaDeHH (Ku et al., 2021) 45.18 30.22 61.06 31.58 40.00 4.17 14.29
HGI-CD (Ku et al., 2021) 25.82 17.17 55.30 16.28 14.29 0.00 0.00
SiamGCN (Ku et al., 2021) 32.04 ± 6.49 19.18 ± 1.03 42.56 ± 1.78 24.33 ± 0.83 11.27 ± 3.07 14.00 ± 2.19 3.70 ± 4.94

Fig. 13. Qualitative results on AHN-CD dataset. See the discussion regarding the
quality of the GT. Regions of interest specifically discussed in the text is highlighted
with ellipses.

categorization on these real data, our results seem quite coherent with
visible changes when comparing AHN3 and AHN4, as shown in Fig. 13.
In our opinion, the main difficulty comes from change annotation. First
of all, in order to obtain our annotations, we performed an automatic
comparison of the two PCs, leading to a lot of mis-classifications, since
objects may have changed even if the label has not. To illustrate this,
one can focus on the left side of the house in Fig. 13. With manual
processing, the small garden would have been annotated as new clutter
because it is totally different to the vegetation existing previously
in AHN3 (see region of interest in Fig. 13a), yielding difficulties in
practice. Another example is given in Fig. 14 where we can observe
a lot of new buildings omitted by the ground truth. Indeed, in AHN3
the whole surface was covered by a glasshouse marked as a building in
the AHN classification. Therefore, in the label comparison step of our
annotation processing chain, new buildings were overlooked. As can be
seen, our method correctly predicted the majority of all new buildings.

Another difficulty comes with the clutter class of AHN, which is a mix of
various types of objects, ranging from all kinds of vegetation to cars or
rubble. The boundary between the clutter and building classes in AHN
annotation is not very clear in some cases. For example when dealing
with garden sheds, as visible on the right side of the house in Fig. 13,
the shed is marked as clutter in the annotation whereas it is sometimes
predicted as new building or even unchanged because of the glasshouse
present in the older PC as explained before (Fig. 14). Also, notice that
the AHN classification of the term ‘building’ itself does not have exactly
the same definition for the building class for AHN3 and for AHN4.

Another remark should be made on the demolition class. Indeed,
this class is largely under-represented: it contains only 0.2% of points
in the training dataset whereas the ‘unchanged’, ‘new building’ and
‘new clutter’ classes represent 87.83%, 7.84% and 4.41% respectively.
This undoubtedly explains the lower scores for demolition, even if
we adapted the training stage to alleviate this issue. An example of
demolition omitted by our network is visible on the ground replacing
the demolished glasshouse of Fig. 14d (see region of interest on the
right side). However, this example might be a difficult situation since in
the older PC, the glasshouse was mapped with both points of the ground
and on its roof, since the LiDAR signal was partly reflected on the
glass surface, and partly passing through it and reflected on the ground.
Indeed, the demolition is well predicted in easier configurations such
as on the left side of Fig. 14.

Despite this imperfect annotation, we thought it was interesting
to perform some tests on such real data. However, figures should
be read with caution and analyzed in comparison to other methods.
Nevertheless, let us point out that the visual results of our method
seem very promising. In particular, the fact that our method provides
results in some cases closer to reality than the ground truth, as seen in
Fig. 14, highlights the robustness against mislabeled data. Therefore,
it would be interesting to possess a method capable of indicating the
confidence level of the prediction, such as Bayesian deep learning
methods. Indeed, it has been shown that some errors in the ground
truth can be highlighted by looking at the confidence level (Dechesne
et al., 2021).

Furthermore, a sub-part of the AHN-CD test set has been manually
annotated to guarantee the consistency in area where the ground truth
is entirely reliable. The sub-area has been chosen to be representative
of each class of change. It contains a total of 707,199 points distributed
as follows: 60.95% ‘unchanged’, 29.06% ‘new building’, 7.04% ‘demo-
lition’ and 2.95% ‘new clutter’. The selected area is about 12,400 m2.
Results are given in Table 13. Again, our methods lead to better results
than other state-of-the-art methods based on handcrafted features or
DSM. In particular, scores are very satisfying on unchanged, new build-
ing and demolition classes. Concerning the new clutter class, results are
less impressive, but still better than other methods. However, as stated
before, this class is a mix of several types of objects. Notice that these
results are obtained with the network trained on the AHN-CD dataset
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WHEN CHANGE DETECTION NEEDS CHANGE INFORMATION

Siamese KPConv achieves good performance… 
but does it really pay attention to changes?
if not, how can we force it to do so?

Providing handcraft features as input: point distribution, point normals, 
height information, and change information (stability feature = ratio 
between number of points in the spherical vs cylindrical neighborhood)
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TABLE I
COMPARISON OF SIAMESE KPCONV NETWORK WITH DIFFERENT INPUT

FEATURES ON THE URB3DCD-V2 LOW-DENSITY LIDAR DATASET.
THE RESULTS ARE GIVEN IN %. THE TEN INPUT FEATURES ARE

AS FOLLOWS: Nx , Ny , Nz , LT , PT , OT , ZRANGE ,
ZRANK , nH , AND STABILITY

processing unit (GPU)-compliant PyTorch Geometric for a
faster computation.

For the hand-crafted feature extraction, the computation is
made before the cylinder extraction to limit border effects.
Neighborhood sizes for the stability are set at 5 m for
Urb3DCD and 3 m for AHN-CD. Concerning other neighbor-
hoods, they are based on the ten nearest neighbor points. Point
normal and DTM computations are performed using point data
abstraction library (PDAL).1

In change detection and categorization, datasets are largely
imbalanced. In other words, most of the data belong to the
unchanged class, despite this class not being the most inter-
esting one. Hence, we preferred herein to disregard the overall
accuracy or precision scores that were not very indicative of
the method’s performance under these settings. Accordingly,
we selected the mean accuracy (mAcc) and the mean of
the intersection over union (IoU) over the classes of change
(mIoUch) for a more reliable quantitative assessment of the
different methods.

All tests were conducted three times to assess the variability
in the results. The average results of these three runs are given
along with the standard deviation in Tables I–IV.

C. Experimental Results

1) Results of Adding Hand-Crafted Features to the Siamese
KPConv Network: Table I presents the quantitative results.
Note that the results given with zero input features corre-
sponded to those reported in the original publication of the
Siamese KPConv [19]. Providing the hand-crafted features
as input in addition to the point coordinates considerably
improved the results. We subsequently assessed the impor-
tance of the unique change-related hand-crafted feature, the
Stability. The point distribution and the height hand-crafted
features seem to have only a slight beneficial impact (+0.37%
of mIoUch) on the change segmentation results. In con-
trast, the Stability feature seems to have a major impact
(+3.67% of mIoUch) on both metrics mAcc and mIoUch.
More specifically, when looking at the per class gain in the
IoU, the stability feature on its own principally helped in the
“new building,” “demolition,” and “missing vegetation” classes
(Fig. 4).

2) Results of the Siamese KPConv Evolution: Tables II
and III present the quantitative results of the evaluation of
the three architectures on the Urb3DCD-V2 dataset. Each of

1https://pdal.io/en/2.5-maintenance/index.html, accessed on 27/02/2023

Fig. 4. Influence on per class IoU of adding hand-crafted features along
with 3-D point coordinates as the input to the Siamese KPConv. For the “new
building,” “demolition,” and “missing vegetation” classes, the high disparity
in the IoU demonstrated that adding the hand-crafted features as input had a
larger influence compared to classes where the results were grouped around
the same value.

TABLE II
RESULTS IN % OF THE THREE SIAMESE KPCONV EVOLUTIONS ON

THE URB3DCD-V2 LOW-DENSITY LIDAR DATASET

the three architectures outperformed the Siamese KPConv net-
work. The best architecture was Encoder Fusion SiamKPConv,
followed by Triplet KPConv. OneConvFusion performed only
slightly better with a 1.5% of the mIoUch when compared with
Siamese KPConv. Looking at the per-class results (Table III
and Fig. 5), the Encoder Fusion SiamKPConv network pro-
vided a significant improvement for all change classes. Figs. 6
and 7 depict the qualitative results. The three architectures
provided very similar results to the ground truth. In Fig. 7,
each of the three Siamese KPConv evolutions showed results
that were more accurate than those in Siamese KPConv in the
new building facades. These facades were particularly hard to
correctly detect because the neighboring facade was not visible
in the first PC Fig. 7(a). Therefore, identifying the new facade
in the class “new building” while the neighboring facades were
unchanged was not obvious. In this situation, the network
should understand that the facade may be new because the
roof is new. In the same manner, a roof that remains unchanged
should also have an unchanged facade. Another difference with
the Siamese KPConv results can be found in Fig. 6 (zoomed
out portions), where a part of the church roof is identified as
new vegetation for Siamese KPConv only, not for the other
architectures. The misclassification was probably due to the
dome roof shape that looked like a tree in the simulated data.
Even if the tree models were not totally spherical (i.e., the
Arbraro software was used to obtain OBJ models of trees;
see [19]), the LiDAR simulation on these models rendered a
quite spherical object with only a few points inside the foliage
of the tree, unlike the real LiDAR acquisition. Therefore, aside
from the shape, the main factor for distinguishing between
vegetation and the dome is that trees are generally on the
ground. These examples highlight the fact that the network
should be able to understand the PC at multiple scales and
predict changes with regard to the surrounding objects.

Table IV presents the quantitative results for the experiments
on the real data. All proposed architectures and exploitation of
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TABLE I
COMPARISON OF SIAMESE KPCONV NETWORK WITH DIFFERENT INPUT

FEATURES ON THE URB3DCD-V2 LOW-DENSITY LIDAR DATASET.
THE RESULTS ARE GIVEN IN %. THE TEN INPUT FEATURES ARE

AS FOLLOWS: Nx , Ny , Nz , LT , PT , OT , ZRANGE ,
ZRANK , nH , AND STABILITY

processing unit (GPU)-compliant PyTorch Geometric for a
faster computation.

For the hand-crafted feature extraction, the computation is
made before the cylinder extraction to limit border effects.
Neighborhood sizes for the stability are set at 5 m for
Urb3DCD and 3 m for AHN-CD. Concerning other neighbor-
hoods, they are based on the ten nearest neighbor points. Point
normal and DTM computations are performed using point data
abstraction library (PDAL).1

In change detection and categorization, datasets are largely
imbalanced. In other words, most of the data belong to the
unchanged class, despite this class not being the most inter-
esting one. Hence, we preferred herein to disregard the overall
accuracy or precision scores that were not very indicative of
the method’s performance under these settings. Accordingly,
we selected the mean accuracy (mAcc) and the mean of
the intersection over union (IoU) over the classes of change
(mIoUch) for a more reliable quantitative assessment of the
different methods.

All tests were conducted three times to assess the variability
in the results. The average results of these three runs are given
along with the standard deviation in Tables I–IV.

C. Experimental Results

1) Results of Adding Hand-Crafted Features to the Siamese
KPConv Network: Table I presents the quantitative results.
Note that the results given with zero input features corre-
sponded to those reported in the original publication of the
Siamese KPConv [19]. Providing the hand-crafted features
as input in addition to the point coordinates considerably
improved the results. We subsequently assessed the impor-
tance of the unique change-related hand-crafted feature, the
Stability. The point distribution and the height hand-crafted
features seem to have only a slight beneficial impact (+0.37%
of mIoUch) on the change segmentation results. In con-
trast, the Stability feature seems to have a major impact
(+3.67% of mIoUch) on both metrics mAcc and mIoUch.
More specifically, when looking at the per class gain in the
IoU, the stability feature on its own principally helped in the
“new building,” “demolition,” and “missing vegetation” classes
(Fig. 4).

2) Results of the Siamese KPConv Evolution: Tables II
and III present the quantitative results of the evaluation of
the three architectures on the Urb3DCD-V2 dataset. Each of

1https://pdal.io/en/2.5-maintenance/index.html, accessed on 27/02/2023

Fig. 4. Influence on per class IoU of adding hand-crafted features along
with 3-D point coordinates as the input to the Siamese KPConv. For the “new
building,” “demolition,” and “missing vegetation” classes, the high disparity
in the IoU demonstrated that adding the hand-crafted features as input had a
larger influence compared to classes where the results were grouped around
the same value.

TABLE II
RESULTS IN % OF THE THREE SIAMESE KPCONV EVOLUTIONS ON

THE URB3DCD-V2 LOW-DENSITY LIDAR DATASET

the three architectures outperformed the Siamese KPConv net-
work. The best architecture was Encoder Fusion SiamKPConv,
followed by Triplet KPConv. OneConvFusion performed only
slightly better with a 1.5% of the mIoUch when compared with
Siamese KPConv. Looking at the per-class results (Table III
and Fig. 5), the Encoder Fusion SiamKPConv network pro-
vided a significant improvement for all change classes. Figs. 6
and 7 depict the qualitative results. The three architectures
provided very similar results to the ground truth. In Fig. 7,
each of the three Siamese KPConv evolutions showed results
that were more accurate than those in Siamese KPConv in the
new building facades. These facades were particularly hard to
correctly detect because the neighboring facade was not visible
in the first PC Fig. 7(a). Therefore, identifying the new facade
in the class “new building” while the neighboring facades were
unchanged was not obvious. In this situation, the network
should understand that the facade may be new because the
roof is new. In the same manner, a roof that remains unchanged
should also have an unchanged facade. Another difference with
the Siamese KPConv results can be found in Fig. 6 (zoomed
out portions), where a part of the church roof is identified as
new vegetation for Siamese KPConv only, not for the other
architectures. The misclassification was probably due to the
dome roof shape that looked like a tree in the simulated data.
Even if the tree models were not totally spherical (i.e., the
Arbraro software was used to obtain OBJ models of trees;
see [19]), the LiDAR simulation on these models rendered a
quite spherical object with only a few points inside the foliage
of the tree, unlike the real LiDAR acquisition. Therefore, aside
from the shape, the main factor for distinguishing between
vegetation and the dome is that trees are generally on the
ground. These examples highlight the fact that the network
should be able to understand the PC at multiple scales and
predict changes with regard to the surrounding objects.

Table IV presents the quantitative results for the experiments
on the real data. All proposed architectures and exploitation of
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WHEN CHANGE DETECTION NEEDS LEARNING CHANGE INFORMATION

We have seen that change information is useful, but can we learn it?
We explore 3 different variants of the original Siamese KPConv
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Oω = 3
√

ω1ω2ω3. (3)

In practice, if ω1 is larger than ω2 and ω3, Lω is near 1. Only
one eigenvalue is meaningful in this case. That is, only one
principal axis results from the PCA, and the points are mainly
distributed along a single axis. If ω1 and ω2 are larger with
regard to ω3, implying that Pω is near 1, the points are spread
in a plane defined by the eigenvectors corresponding to ω1 and
ω2. Lastly, Oω is high if each of the three eigenvalues is of
equal importance. This implies that the points are scattered
along the three axes in a 3-D volumetric space.

Once eigenvalues (ω1, ω2, and ω3) are computed, point nor-
mals (Nx , Ny , and Nz) are obtained by taking the eigenvector
corresponding to the smallest eigenvalue.

Zrange and Zrank provide the height information by providing
the maximum height (Z coordinate) difference between the
points in the neighborhood and the rank of the height of the
considered points within the neighborhood. The normalized
height nH completes the height information by providing the
difference between the height of the considered points and the
local digital terrain model (DTM) (rasterization of the PC at
the ground level).

Lastly, the Stability [24] feature provides bi-temporal infor-
mation on the considered point. It is the ratio of the number of
points in the spherical neighborhood to the number of points in
the vertical cylindrical neighborhood in the other PC (oriented
along the vertical axis). Thus, in each point of the current PC,
Stability is the ratio between the number of points in the 3-D
(n3-D) and 2-D (n2-D) neighborhoods in the other PC, in present

Stability = n3→D

n2→D
↑ 100. (4)

Looking only at the number of points in the 3-D neighborhood
of each point of both PCs is enough to retrieve the changes
on isolated buildings and trees. However, in dense forest areas
or when different objects are close to each other, the 3-D
spherical neighborhood may still contain points coming from
some other unchanged entity. Hence, taking the ratio with
the 2-D neighborhood is a way to consider the unchanged
points and obtain an indicator of change and object instability.
The ratio will be near 100% if no change occurs and tends
to 0% in case of changes. We expect the stability value of
vegetation to be lower. Most of the hand-crafted features
presented in [24] are used except for those that utilize LiDAR’s
multitarget capability because our datasets do not contain such
information (see Section III-A). We recall that the Siamese
KPConv architecture takes as many input features as desired,
by simply modifying the number of inputs of the first layer of
encoders.

B. New Models for 3-D PC Change Detection
We will now explore how to learn this change infor-

mation through novel deep networks. We built upon the
Siamese KPConv model to propose three original architectures
emphasizing the change-related features. The three presented
architectures are based on KPConv [21] because it had been
proven efficient for the change detection task in 3-D PCs.
We fused the features coming from both PCs by using the

Fig. 1. OneConvFusion architecture for the 3-D PC change segmentation.
The links between successive layers were omitted for brevity.

nearest-point difference strategy, as in Siamese KPConv

(P1,F1) –↓(P2,F2) = f2i → f1 j | j=arg min(↔x2i →x1 j ↔). (5)

Thus, for PCs P1 and P2, with their corresponding features
F1 and F2, the feature difference –↓ was computed between
features f2i ↗ F2 of each point x2i ↗ P2 of the second PC
and features f1 j ↗ F1 of the nearest-point x1 j ↗ P1.

The first option was to create a relatively simple network
by fusing the information of both PCs just after the first layer
(Fig. 1). The following layer of the encoder took as input only
the nearest-point feature difference (noted –↓). The following
layers of the encoder and the decoder took as input the output
of the previous layer, as in a classical fully convolutionnal
network (FCN). Here, the idea was to evaluate the benefits of
dealing with differences early in the process. This architecture
is called OneConvFusion.

However, the mono-date features of the first layer might
not be sufficient for accurate change identification. There-
fore, we designed the Triplet KPConv network (Fig. 2),
that contained two encoders for extracting the mono-date
information (as in the Siamese KPConv network) and an
additional encoder that extracts the change-related features.
The “change encoder” took as input the nearest-point dif-
ference computed after the first layer of the mono-date
encoders. The following layers of the change encoder took
as input the output feature concatenation of the previous
layer and the result of the nearest-point features (from the
mono-date encoder) difference of the corresponding scale. The
multiscale mono-date and change information were both con-
sidered. The decoder used the features extracted by the change
encoder as the input. Note that mono-date encoders can either
share weights or not, the latter leading to the Pseudo-Triplet
KPConv, as for Siamese KPConv, and a Pseudo-Siamese
KPConv. Therefore, in a shared-weight configuration, the
Triplet KPConv network is as symmetrical as the Siamese
KPConv.

The third version of the architecture was designed to directly
fuse the mono-date and change features in the same encoder.
This network is called Encoder Fusion SiamKPConv. The
first encoder extracted the mono-date features of the older
PC using convolution layers (Fig. 3, top), as in all previous
architectures. As illustrated in the bottom of Fig. 3, the second
encoder more specifically combined the output features from
the newer PC and the nearest point feature difference. Each
layer of this second encoder took as input the output feature
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Fig. 2. Triplet KPConv architecture for 3-D the PCs change segmentation.

Fig. 3. Encoder Fusion SiamKPConv architecture for the 3-D PC change
segmentation.

concatenation of the previous layer and the difference of the
features from this encoder and the mono-date encoder of the
older PC. Hence, both mono-date and change features can be
combined in convolutional layers. Note that this third archi-
tecture is not symmetrical, in contrast to the previous ones,
because the weights of the two encoders were obviously not
shared. As regards the Triplet KPConv and OneConvFusion
architectures, the idea was to encode the differences earlier in
the process. In this third architecture, however, we fused them
with the features of the second PC to better combine the two
different feature types.

These proposed new architectures are in line with the recent
developments for the 2-D image change detection in terms
of the importance of data fusion [31], [35], [36] for the
change detection task. By convolving the change features in
the encoder, we expect the network to put more attention on
the changes and better combine the multiscale change features.

III. RESULTS

The experimental results of our methods are elaborated here
on public simulated and real datasets to quantitatively evaluate
our networks. Before we describe them in detail, let us first
introduce the experimental settings.

A. Datasets

The public dataset Urb3DCD [41] was used for our
experiments. This dataset comprised various semantic change
situations inside cities based on real information related to the
organization of streets, areas, and so on, on which buildings,

vegetation, or cars have been added. It then simulates PCs
derived from laser pulses from ALS with real flight plans.

Among the different dataset versions, we chose to assess the
one with a low point density (approximately 0.5 points/m2)
because it contains more change classes (i.e., “unchanged,”
“new building,” “demolition,” “new vegetation,” “vegetation
growth,” “missing vegetation,” and “mobile object”) and it
relies on PCs that are more realistic than the first dataset
version [19].

Some quantitative results are given using the AHN-CD
dataset presented in [19] to prove the effectiveness of our
methods on real data. This dataset is composed of two dates of
the ALS surveys over the Netherlands. The PC densities varied
from 10 to 14 points/m2 for the first date (AHN3) and 10–24
points/m2 for the second date (AHN4). Some change anno-
tations were semiautomatically derived from the mono-date
semantic labeling for the training and validation sets. The
test set was manually annotated to avoid any labelization
errors present in the semiautomatic annotation. In addition to
the “unchanged” classes, this dataset also contains the three
following change classes: “new building,” “demolition,” and
“new clutter.”

B. Experimental Settings

For the experimental settings, we utilized the hyperpa-
rameters used by [19] for Siamese KPConv. Some cylinder
pairs of 50 m radius were extracted from both the PCs for
Urb3DCD. The first subsampling rate dl0 was set to 1 m.
A radius of 25 m was used for the AHN-CD dataset with a
first subsampling rate dl0 set to 0.5 m. For training purposes,
we minimized the negative log-likelihood (NLL) loss using
a stochastic gradient descent (SGD) with a 0.98 momentum.
The loss was calculated as follows:

NLL
(

yt , yp
)

= →
(

yt log
(

yp
)

+ (1 → yt ) log
(
1 → yp

))
(6)

where yt corresponds to the target label’s probability and
yp is the predicted label’s probability. Ten cylinder pairs
were used in each batch. The initial learning rate was set
to 10→2 and scheduled to decrease exponentially. For the
training, we relied on a random drawing of training cylinders
as a function of the class distribution as in [19], because
the change detection dataset was generally imbalanced. For
each training epoch, 6000 cylinder training pairs were seen
by the network. A total of 3000 pairs from the valida-
tion set were used during the validation. The loss was
weighted according to the class distribution to ensure learning
the less-represented classes as well. Data augmentation was
performed during training through the random rotation of
cylinders around the vertical axis (note: both cylinders of a
pair were rotated by the same angle to keep the coherence
inside the pair) and the addition of a Gaussian noise at point
level.

The development of these architectures was implemented in
PyTorch and relied on the KPConv implementation available
in Torch-Points3D [47]. For the nearest-point feature differ-
ence (5), the nearest point was determined by the k-nearest
neighbors (kNN) implementation available in the graphics
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Fig. 2. Triplet KPConv architecture for 3-D the PCs change segmentation.

Fig. 3. Encoder Fusion SiamKPConv architecture for the 3-D PC change
segmentation.

concatenation of the previous layer and the difference of the
features from this encoder and the mono-date encoder of the
older PC. Hence, both mono-date and change features can be
combined in convolutional layers. Note that this third archi-
tecture is not symmetrical, in contrast to the previous ones,
because the weights of the two encoders were obviously not
shared. As regards the Triplet KPConv and OneConvFusion
architectures, the idea was to encode the differences earlier in
the process. In this third architecture, however, we fused them
with the features of the second PC to better combine the two
different feature types.

These proposed new architectures are in line with the recent
developments for the 2-D image change detection in terms
of the importance of data fusion [31], [35], [36] for the
change detection task. By convolving the change features in
the encoder, we expect the network to put more attention on
the changes and better combine the multiscale change features.

III. RESULTS

The experimental results of our methods are elaborated here
on public simulated and real datasets to quantitatively evaluate
our networks. Before we describe them in detail, let us first
introduce the experimental settings.

A. Datasets

The public dataset Urb3DCD [41] was used for our
experiments. This dataset comprised various semantic change
situations inside cities based on real information related to the
organization of streets, areas, and so on, on which buildings,

vegetation, or cars have been added. It then simulates PCs
derived from laser pulses from ALS with real flight plans.

Among the different dataset versions, we chose to assess the
one with a low point density (approximately 0.5 points/m2)
because it contains more change classes (i.e., “unchanged,”
“new building,” “demolition,” “new vegetation,” “vegetation
growth,” “missing vegetation,” and “mobile object”) and it
relies on PCs that are more realistic than the first dataset
version [19].

Some quantitative results are given using the AHN-CD
dataset presented in [19] to prove the effectiveness of our
methods on real data. This dataset is composed of two dates of
the ALS surveys over the Netherlands. The PC densities varied
from 10 to 14 points/m2 for the first date (AHN3) and 10–24
points/m2 for the second date (AHN4). Some change anno-
tations were semiautomatically derived from the mono-date
semantic labeling for the training and validation sets. The
test set was manually annotated to avoid any labelization
errors present in the semiautomatic annotation. In addition to
the “unchanged” classes, this dataset also contains the three
following change classes: “new building,” “demolition,” and
“new clutter.”

B. Experimental Settings

For the experimental settings, we utilized the hyperpa-
rameters used by [19] for Siamese KPConv. Some cylinder
pairs of 50 m radius were extracted from both the PCs for
Urb3DCD. The first subsampling rate dl0 was set to 1 m.
A radius of 25 m was used for the AHN-CD dataset with a
first subsampling rate dl0 set to 0.5 m. For training purposes,
we minimized the negative log-likelihood (NLL) loss using
a stochastic gradient descent (SGD) with a 0.98 momentum.
The loss was calculated as follows:
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where yt corresponds to the target label’s probability and
yp is the predicted label’s probability. Ten cylinder pairs
were used in each batch. The initial learning rate was set
to 10→2 and scheduled to decrease exponentially. For the
training, we relied on a random drawing of training cylinders
as a function of the class distribution as in [19], because
the change detection dataset was generally imbalanced. For
each training epoch, 6000 cylinder training pairs were seen
by the network. A total of 3000 pairs from the valida-
tion set were used during the validation. The loss was
weighted according to the class distribution to ensure learning
the less-represented classes as well. Data augmentation was
performed during training through the random rotation of
cylinders around the vertical axis (note: both cylinders of a
pair were rotated by the same angle to keep the coherence
inside the pair) and the addition of a Gaussian noise at point
level.

The development of these architectures was implemented in
PyTorch and relied on the KPConv implementation available
in Torch-Points3D [47]. For the nearest-point feature differ-
ence (5), the nearest point was determined by the k-nearest
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with rigid or deformable kernels. In the rigid case, kernel points are
distributed in order to be as far as possible from each other. In the
deformable case, positions of kernel points are adapted to the PC. In
fact, a local shift of each kernel point is learned by the network to adapt
to the scene. In practice, deformable kernels considerably increase the
number of training parameters and give even worst results than rigid
kernels in outdoor scenes where the variability is lower (Thomas et al.,
2019).

Let us now introduce the Siamese network based on KPConv pro-
posed in this paper.

3. 3D point cloud change detection

The following section describes the proposed methods for change
detection between bi-temporal 3D PCs whether at PC or points scale
(see Fig. 1). Based on the literature of change detection in 2D images
and on the state-of-the-art in deep learning for processing 3D PCs, we
propose a Siamese FCN with Kernel Point Convolution (KPConv). In
fact, standard 2D convolution involved in Siamese FCN (Daudt et al.,
2018) is not directly suitable for 3D PCs. We therefore combine Siamese
FCN with specific 3D PC convolutions, namely KPConv (Thomas et al.,
2019). Indeed, as pointed out in Section 2.3, KPConv is chosen because
of its high performances against the state-of-the-art and its intrinsic
compatibility with the Siamese framework. We recall the appealing
properties of KPConv over the well-established PointNet in our change
detection context, i.e., its ability to scale to large datasets and to deal
with different number of points from each of the input PCs.

3.1. Siamese KPConv network

To extend the Siamese principle to 3D PCs, we propose here to
embed the KPConv in a deep Siamese network, as presented in Fig. 2.
We detail here the different parts of our architecture. Both input PCs
will pass through encoders consisting of a stack of five layers containing
two convolutional blocks, the first one being ‘‘strided’’ except for the
first block.

Convolutions are performed here with KPConv presented in Sec-
tion 2.3. To mimic 2D ‘‘strided’’ convolutions, ‘‘strided’’ KPConv op-
erations reduce the number of points to compute features at different
scales. At each layer 𝜔, the cell size 𝜀𝜗𝜔 corresponding to the minimum
distance between two consecutive points is recursively defined as 𝜀𝜗𝜔 =
2ω𝜀𝜗𝜔ε1. As for the first layer, 𝜀𝜗0 is set according to the dataset density
and the level of detail in the changes we aim to retrieve. KPConv radius
𝜛 also depends on the layer and is set to 𝜛𝜔 = 2.5ω𝜀𝜗𝜔 . The decoder part
is composed of a stack of five layers holding a nearest upsampling and
concatenation stage and a unary convolution. The unary convolution
behaves like a fully connected layer. We can observe that encoder and
decoder architectures are very similar to KP-FCNN used for semantic
segmentation (Thomas et al., 2019).

Equivalently to a typical FCN with skip connections, the network
enables the passing of information between intermediate layers of the
encoder and the decoder. In Siamese networks however, a strategy
should be used to fuse data coming from both encoders. Daudt et al.
(2018) showed that a difference of features coming from both encoder
layers gives better results for change detection. The same conclusion is
made in SiamGCN (Ku et al., 2021): the difference of features leads to
more accurate results than concatenating both sets of features into the
decoder part. Inspired by these results, we concatenate the difference
of extracted features associated with the corresponding encoding scale
(see Fig. 2). In practice, computing such feature difference is not
obvious, since PCs do not contain the same number of points and are
not defined at the same positions, even in non-changed areas. To cope
with this issue, we compare each point of the second PC with its nearest
spatial point in the first PC. Thus, for two PCs ∱1 and ∱2, with their
corresponding features ∲1 and ∲2, the feature difference 𝜚 is computed

Fig. 2. Our Siamese KPConv network architecture. The Pseudo-Siamese version of the
network is the same without shared weights symbolized by dotted purple arrows.

between features 𝜍2𝜑 ϑ ∲2 of each point 𝛻2𝜑 ϑ ∱2 of the second PC and
features 𝜍1𝜔 ϑ ∲1 of the nearest point 𝛻1𝜔 ϑ ∱1. Thereby:

(∱1,∲1)𝜚 (∱2,∲2) = 𝜍2𝜑 ε 𝜍1𝜔⌋𝜔=argmin(⌈𝛻2𝜑ε𝛻1𝜔⌈) (4)

Within the encoder, ‘‘strided’’ convolutions sub-sample PCs at each
layer, leading us to perform nearest neighbor computation for the
feature difference each time the PC is sub-sampled.

Let us observe that while both our Siamese KPConv network and
the original KP-FCNN share the principle of embedding KPConv into
a deep neural network, they significantly differ to address their re-
spective tasks: semantic segmentation for KP-FCNN vs. multiple change
segmentation for our Siamese KPConv. Indeed, our model relies on two
encoders enabling to take two different PCs as input, before fusing the
encoded information through some subtraction layers.

The network takes as input the 3D point coordinates and, similarly
to state-of-the-art deep models for 3D PCs, is also flexible to any sup-
plementary input features such as Red-Green-Blue (RGB) information,
LiDAR intensity, etc. In practice, literature reports that there is no
systematic gain when using color information (Boulch, 2020). Fusion of
color and geometric information can lead to better results but remains
an open problem (especially when they come from two different data
sources) (Widyaningrum et al., 2021). Since this question is out-of-
scope of our study, we simply recommend following the usual practice
in the field (characterize each point by the geometric coordinates X,Y,Z
and any available supplementary features RGB, intensity, etc.) as early
done by the authors of PointNet (Qi et al., 2017a). These supplementary
features can be easily added as inputs by modifying the input dimension
of weights matrix of kernel points of the first layer.

We propose two versions of this network: encoder with shared or
unshared weights (the latter being equivalent to a pseudo-Siamese net-
work). Let us notice that even if weights are not shared in two encoders
of the Pseudo-Siamese version, other hyper-parameters remain similar.
Both will be evaluated in Section 5. Usually, pseudo-Siamese networks
are used when data to be compared come with different characteristics.

3.2. Siamese KPConv network for classification of change at PCs scale

In order to compare our proposed method to the state-of-the-art
which remains limited to PCs change classification, we built a second
version of Siamese KPConv dedicated to this task (see Fig. 1b), hence-
forth referred as Siamese KPConv Cls. The architecture is presented in
Fig. 3. It is composed of the same encoder part as in Siamese KPConv
network, except that a fully connected layer has been added at the end
of the last layer. Then, features coming from the last layer of each
encoder are fused through a difference based on nearest neighbor as
in the previous architecture, before these feature differences are given
as input to a fully connected layer. A global average pooling is done
in order to downscale to the global PC scale. Finally, after a last fully
connected layer, PC change classification results are obtained.

Notice that several configurations of this network have been empir-
ically tested to select the best architecture in terms of number of layers

Original

OneConvFusion

Triplet KPConv

Encoder Fusion SiamKPConv
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TABLE I
COMPARISON OF SIAMESE KPCONV NETWORK WITH DIFFERENT INPUT

FEATURES ON THE URB3DCD-V2 LOW-DENSITY LIDAR DATASET.
THE RESULTS ARE GIVEN IN %. THE TEN INPUT FEATURES ARE

AS FOLLOWS: Nx , Ny , Nz , LT , PT , OT , ZRANGE ,
ZRANK , nH , AND STABILITY

processing unit (GPU)-compliant PyTorch Geometric for a
faster computation.

For the hand-crafted feature extraction, the computation is
made before the cylinder extraction to limit border effects.
Neighborhood sizes for the stability are set at 5 m for
Urb3DCD and 3 m for AHN-CD. Concerning other neighbor-
hoods, they are based on the ten nearest neighbor points. Point
normal and DTM computations are performed using point data
abstraction library (PDAL).1

In change detection and categorization, datasets are largely
imbalanced. In other words, most of the data belong to the
unchanged class, despite this class not being the most inter-
esting one. Hence, we preferred herein to disregard the overall
accuracy or precision scores that were not very indicative of
the method’s performance under these settings. Accordingly,
we selected the mean accuracy (mAcc) and the mean of
the intersection over union (IoU) over the classes of change
(mIoUch) for a more reliable quantitative assessment of the
different methods.

All tests were conducted three times to assess the variability
in the results. The average results of these three runs are given
along with the standard deviation in Tables I–IV.

C. Experimental Results

1) Results of Adding Hand-Crafted Features to the Siamese
KPConv Network: Table I presents the quantitative results.
Note that the results given with zero input features corre-
sponded to those reported in the original publication of the
Siamese KPConv [19]. Providing the hand-crafted features
as input in addition to the point coordinates considerably
improved the results. We subsequently assessed the impor-
tance of the unique change-related hand-crafted feature, the
Stability. The point distribution and the height hand-crafted
features seem to have only a slight beneficial impact (+0.37%
of mIoUch) on the change segmentation results. In con-
trast, the Stability feature seems to have a major impact
(+3.67% of mIoUch) on both metrics mAcc and mIoUch.
More specifically, when looking at the per class gain in the
IoU, the stability feature on its own principally helped in the
“new building,” “demolition,” and “missing vegetation” classes
(Fig. 4).

2) Results of the Siamese KPConv Evolution: Tables II
and III present the quantitative results of the evaluation of
the three architectures on the Urb3DCD-V2 dataset. Each of

1https://pdal.io/en/2.5-maintenance/index.html, accessed on 27/02/2023

Fig. 4. Influence on per class IoU of adding hand-crafted features along
with 3-D point coordinates as the input to the Siamese KPConv. For the “new
building,” “demolition,” and “missing vegetation” classes, the high disparity
in the IoU demonstrated that adding the hand-crafted features as input had a
larger influence compared to classes where the results were grouped around
the same value.

TABLE II
RESULTS IN % OF THE THREE SIAMESE KPCONV EVOLUTIONS ON

THE URB3DCD-V2 LOW-DENSITY LIDAR DATASET

the three architectures outperformed the Siamese KPConv net-
work. The best architecture was Encoder Fusion SiamKPConv,
followed by Triplet KPConv. OneConvFusion performed only
slightly better with a 1.5% of the mIoUch when compared with
Siamese KPConv. Looking at the per-class results (Table III
and Fig. 5), the Encoder Fusion SiamKPConv network pro-
vided a significant improvement for all change classes. Figs. 6
and 7 depict the qualitative results. The three architectures
provided very similar results to the ground truth. In Fig. 7,
each of the three Siamese KPConv evolutions showed results
that were more accurate than those in Siamese KPConv in the
new building facades. These facades were particularly hard to
correctly detect because the neighboring facade was not visible
in the first PC Fig. 7(a). Therefore, identifying the new facade
in the class “new building” while the neighboring facades were
unchanged was not obvious. In this situation, the network
should understand that the facade may be new because the
roof is new. In the same manner, a roof that remains unchanged
should also have an unchanged facade. Another difference with
the Siamese KPConv results can be found in Fig. 6 (zoomed
out portions), where a part of the church roof is identified as
new vegetation for Siamese KPConv only, not for the other
architectures. The misclassification was probably due to the
dome roof shape that looked like a tree in the simulated data.
Even if the tree models were not totally spherical (i.e., the
Arbraro software was used to obtain OBJ models of trees;
see [19]), the LiDAR simulation on these models rendered a
quite spherical object with only a few points inside the foliage
of the tree, unlike the real LiDAR acquisition. Therefore, aside
from the shape, the main factor for distinguishing between
vegetation and the dome is that trees are generally on the
ground. These examples highlight the fact that the network
should be able to understand the PC at multiple scales and
predict changes with regard to the surrounding objects.

Table IV presents the quantitative results for the experiments
on the real data. All proposed architectures and exploitation of
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TABLE III
PER-CLASS IOU SCORES OF THE THREE SIAMESE KPCONV EVOLUTIONS ON THE URB3DCD-V2 LOW-DENSITY LIDAR DATASET. THE RESULTS WERE

GIVEN IN %. VEG.: VEGETATION; INPUT FEAT.: INPUT FEATURES; AND SKPCONV: SIAMESE KPCONV

Fig. 5. Influence on per class IoU of the three Siamese KPConv evolutions,
namely OneConvFusion, Triplet KPConv, and Encoder Fusion SiamKPConv.
The results of Siamese KPConv with ten hand-crafted input features were also
included for comparison purposes.

TABLE IV
RESULTS IN % OF THE THREE SIAMESE KPCONV EVOLUTIONS

ON THE MANUALLY CLEANED AHN-CD DATASET

the hand-crafted features enabled us to improve the state-of-
the-art Siamese KPConv results. Encoder Fusion SiamKPConv
and OneConvFusion showed the largest improvements of up
to approximately 5% of the mIoUch. In contrast to the results
on the Urb3DCD-V2 results, OneConvFusion obtained results
comparable with those of Encoder Fusion SiamKPConv, albeit
with a larger standard deviation. Given that the training set for
AHN-CD included numerous labeling errors and considering
the standard deviations of OneConvFusion and Encoder Fusion
SiamKPConv, these two approaches were similar in terms of
performance. Although OneConvFusion achieved only a minor
enhancement in Urb3DCD-V2, it produced results that yielded
a significant improvement on the AHN-CD dataset similar to
Encoder Fusion SiamKPConv. OneConvFusion is a network
with fewer parameters compared to other methods (Table V).
This probably led to a better generalization of the training data
and resulted in superior results despite the numerous errors
present in the training database.

IV. DISCUSSION

A. Number of Parameters
While it was important to study the predicted change

detection results, it is also relevant to check the number of
trainable parameters in each architecture. Table V shows that
Triplet KPConv and Encoder Fusion SiamKPConv required
approximately two times more trainable parameters, whereas

TABLE V
NUMBER OF PARAMETERS IN EACH PRESENTED ARCHITECTURE

COMPARED TO THOSE OF THE ORIGINAL SIAMESE
KPCONV NETWORK

OneConvFusion needed exactly the same number of parame-
ters as Siamese KPConv. Adding input features only slightly
increased the number of parameters. This must be consid-
ered in case of limited training capabilities. Directly guiding
the network to change detection by introducing hand-crafted
features seems interesting in preventing a drastic increase in
trainable parameters.

B. Importance of Learning Change Information
An immediate observation from our experiments was that

adding hand-crafted features related to both input data as
the input to the Siamese KPConv network did not bring any
significant change in the results (Table II, third line—Addition
of features—compared to the first one).

Looking at the results presented in [19], the Siamese
KPConv architecture was able to detect the change on its own;
however, it seems that giving a hand-crafted feature related to
the change specifically as an input helps the network focus on
the change with a significant improvement (Table II, fourth
line—Addition of a change feature—compared to the first
one).

This finding underlines the fact that encoding change
information is important. On this basis, we confirm that the
proposed evolutions of Siamese KPConv depict the relevance
of applying convolution on the nearest-point feature difference
at multiple scales to obtain change-related features (Table III
three last lines) not by introducing change features, but by
encoding them directly. The somewhat worse results of the
OneConvFusion network, specifically on Urb3DCD, exhibit
the importance of keeping multiscale mono-date features in
the architecture. Note that this is in line with the deep learning
for the change detection literature in 2-D [20], [31], [32],
[33]. The fact that Encoder Fusion SiamKPConv provided
better results compared to the Triplet network showed that
combining both mono-date semantic and change features as
input to the convolutional layers enables the extraction of
useful discriminative features for the change segmentation
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Fig. 7. Visual change detection results on the Urb3DCD-V2 low-density LiDAR subdataset in an area containing occlusions: (a) and (b) two input PCs;
(c) ground truth (GT): simulated changes; (d) Siamese KPConv results; (e) OneConvFusion results; (f) Triplet KPConv results; and (g) Encoder Fusion
SiamKPConv results. The regions of interest specifically discussed in the text were highlighted with ellipses.

V. CONCLUSION
In this work, we proposed the enhancement of change detec-

tion in raw 3-D PCs by using deep networks. We suggested the
introduction of the change information early in the network to
better detect and categorize the changes in 3-D PCs. The first
proposition for enhancing the existing method was to provide

some hand-crafted features as input along with 3-D point
coordinates. We demonstrated that the addition of a single
change-related feature input to the existing Siamese KPConv
method yields an enhancement of approximately 3.70% of the
mean of the IoU over change classes. We also proposed three
new architectures for change segmentation based on raw 3-D
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Fig. 7. Visual change detection results on the Urb3DCD-V2 low-density LiDAR subdataset in an area containing occlusions: (a) and (b) two input PCs;
(c) ground truth (GT): simulated changes; (d) Siamese KPConv results; (e) OneConvFusion results; (f) Triplet KPConv results; and (g) Encoder Fusion
SiamKPConv results. The regions of interest specifically discussed in the text were highlighted with ellipses.
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coordinates. We demonstrated that the addition of a single
change-related feature input to the existing Siamese KPConv
method yields an enhancement of approximately 3.70% of the
mean of the IoU over change classes. We also proposed three
new architectures for change segmentation based on raw 3-D
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Fig. 7. Visual change detection results on the Urb3DCD-V2 low-density LiDAR subdataset in an area containing occlusions: (a) and (b) two input PCs;
(c) ground truth (GT): simulated changes; (d) Siamese KPConv results; (e) OneConvFusion results; (f) Triplet KPConv results; and (g) Encoder Fusion
SiamKPConv results. The regions of interest specifically discussed in the text were highlighted with ellipses.
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new architectures for change segmentation based on raw 3-D
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Fig. 7. Visual change detection results on the Urb3DCD-V2 low-density LiDAR subdataset in an area containing occlusions: (a) and (b) two input PCs;
(c) ground truth (GT): simulated changes; (d) Siamese KPConv results; (e) OneConvFusion results; (f) Triplet KPConv results; and (g) Encoder Fusion
SiamKPConv results. The regions of interest specifically discussed in the text were highlighted with ellipses.

V. CONCLUSION
In this work, we proposed the enhancement of change detec-

tion in raw 3-D PCs by using deep networks. We suggested the
introduction of the change information early in the network to
better detect and categorize the changes in 3-D PCs. The first
proposition for enhancing the existing method was to provide

some hand-crafted features as input along with 3-D point
coordinates. We demonstrated that the addition of a single
change-related feature input to the existing Siamese KPConv
method yields an enhancement of approximately 3.70% of the
mean of the IoU over change classes. We also proposed three
new architectures for change segmentation based on raw 3-D
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Table 14
Transfer learning tests with training on the Urb3DCD–V2 MS sub-dataset and testing on the Urb3DCD–V2 low-density LiDAR dataset. DSM-based methods are adaptation of Daudt
et al. (2018) networks to DSM inspired by Zhang et al. (2019) works. Results are given in %. Build., demol., veg. and M.O. stand for building, demolition, vegetation and mobile
object respectively.
Method mIoU

𝜔𝜀
Per class IoU

Unchanged New build. Demol. New veg. Veg. growth Missing veg. M.O.

Pseudo-Siamese KPConv (ours) 59.10 92.91 69.73 63.71 40.88 35.80 65.69 78.79
DSM-Siamese 37.07 92.08 74.61 54.67 39.41 0.43 38.05 15.25
DSM-Pseudo-Siamese 35.77 91.55 69.36 56.02 36.3 4.76 30.11 17.94
DSM-FC-EF 42.01 92.87 67.11 55.63 33.41 1.14 39.1 29.72
RF (Tran et al., 2018) 14.48 87.74 54.03 21.91 8.24 0.47 0.02 2.19

with different sizes of training set (symbolized by the number of
cylinders given as input) and compared results with the network pre-
trained on a simulated dataset and fine-tuned on real data. The results
are depicted in Fig. 15. For these experiments, input cylinders are
randomly chosen among the whole training set according to the class
balance before the training, conversely to results shown in Section 5.3,
where, for each training epoch, 6000 cylinders are chosen randomly in
the training set according to class balance (see Section 5.2). Chosen
cylinders are the same for both training from scratch, and transfer
learning tests. Notice that classes from Urb3DCD–V2 and AHN-CD are
not the same and we initialized weights with those issued from the
Urb3DCD–V2 pre-training, except for the last layer of the network,
which gives the final label. This last layer is initialized randomly as for
the whole network when trained from scratch. Pre-trained weights are
taken from Siamese KPConv with shared weight configuration trained
on the sub-dataset Urb3DCD–V2-1 (low-density LiDAR), with input
cylinders of 50 m in radius (𝜗𝜛0=1 m). Even if the results are slightly
higher when weights are not shared, the shared weights configuration
provides better generalization capacities according to our experimental
observations. Based on this figure, we can make several observations.
The proposed fine-tuning strategy allows us to reduce the number of
cylinders to 100, to achieve the same score. It should be noticed that
our fine-tuning is straightforward, and one could expect better results
using domain adaptation or meta-learning (Rußwurm et al., 2020). We
have also observed that using more than 100 training cylinders did
not improve the results further. This is due to an overfitting situation
faced by our training procedure since we do not consider a random
drawing for cylinders selection at each epoch, conversely to the process
proposed by Thomas et al. (2019) that requires up to 360,000 cylinders
in total (considering 60 epochs) and that was followed in Section 5.
Improving the simulator to generate data closer to real data (in terms
of resolution, noise, and classes) would definitely help, but this requires
knowing the target data in advance, which is not realistic in all use
cases.

7. Conclusion

In this study we have presented an original deep neural network,
called Siamese KPConv, dedicated to change detection and categoriza-
tion on 3D point clouds. We build upon successful deep components
such as a Siamese network and Kernel Point Convolution to elaborate
the first, to our knowledge, deep network able to cope with pairs
of raw 3D point clouds and perform change segmentation task. We
conducted various experiments in an urban environment using real
and synthetic datasets. The latter were generated thanks to a simulator
also introduced in this paper, that extends de Gélis et al. (2021b) to 6
different classes of change concerning buildings, vegetation and mobile
objects. This enabled us to create different datasets with various quality
gathered in the Urb3DCD–V2 product.

In addition, tests were carried out on AHN-CD, a real dataset we
built from AHN products, a series of national surveys on the Nether-
lands. For each dataset, our technique outperforms the state-of-the-art
with a significant margin, around 30% of mean IoU over classes of
change. Since the best existing method before our Siamese KPConv

Fig. 15. Comparison between training from scratch and using pre-trained weights
learned on a simulated dataset of Siamese KPConv. The mean of IoU over classes of
change is given as a function of the number of cylinders of 50 m in diameter given as
input. In red, the best results obtained with Siamese KPConv trained from scratch over
6000 cylinders with random drawing. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

relies on the traditional machine learning algorithm trained on hand-
crafted features, as reported in de Gélis et al. (2021b), and there is no
deep learning method dealing with change detection and categorization
over raw 3D PCs, we have also been inspired by the literature to provide
as baselines two different networks (a Siamese and a Fully-Connected
(FC) network with early fusion) on 2D rasterization of PCs (DSMs). Our
method consistently leads to significant improvement, between 15%
to 30% in mean of IoU over classes of change when compared with
the best deep baseline. Furthermore, an adapted version of Siamese
KPConv for the change classification task outperforms state-of-the-art
methods including deep learning based networks on both synthetic and
real (Change3D) datasets.

In a last part, we assessed the transfer learning capacity of the
network when trained on different conditions of acquisition than those
faced in the test set. When directly transferring without retraining
from the multi-sensor dataset to the LiDAR with low density, obtained
results are higher than the traditional machine learning results without
transfer, i.e., trained on the target data. We also evaluated the benefit
of pre-training the network on simulated dataset to decrease the size
of training set needed on the real data. Thanks to pre-training, only
less than 1/3000 of cylinders from the target domain are needed to
reach the maximal score. It significantly reduces the burden of manual
annotation.

To the best of our knowledge, our work is the first to deal with
deep learning for multiple change segmentation over 3D PCs. While
our method shows some promising results on both synthetic and real
datasets, and good generalization capabilities, it remains dependent
on the amount and quality of the labels in the training set. Thus, in
future work, we plan to deal with the challenging annotation issue by
exploring semi-supervised or even unsupervised learning approaches
through self-supervision.
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Table 14
Transfer learning tests with training on the Urb3DCD–V2 MS sub-dataset and testing on the Urb3DCD–V2 low-density LiDAR dataset. DSM-based methods are adaptation of Daudt
et al. (2018) networks to DSM inspired by Zhang et al. (2019) works. Results are given in %. Build., demol., veg. and M.O. stand for building, demolition, vegetation and mobile
object respectively.
Method mIoU

𝜔𝜀
Per class IoU

Unchanged New build. Demol. New veg. Veg. growth Missing veg. M.O.

Pseudo-Siamese KPConv (ours) 59.10 92.91 69.73 63.71 40.88 35.80 65.69 78.79
DSM-Siamese 37.07 92.08 74.61 54.67 39.41 0.43 38.05 15.25
DSM-Pseudo-Siamese 35.77 91.55 69.36 56.02 36.3 4.76 30.11 17.94
DSM-FC-EF 42.01 92.87 67.11 55.63 33.41 1.14 39.1 29.72
RF (Tran et al., 2018) 14.48 87.74 54.03 21.91 8.24 0.47 0.02 2.19

with different sizes of training set (symbolized by the number of
cylinders given as input) and compared results with the network pre-
trained on a simulated dataset and fine-tuned on real data. The results
are depicted in Fig. 15. For these experiments, input cylinders are
randomly chosen among the whole training set according to the class
balance before the training, conversely to results shown in Section 5.3,
where, for each training epoch, 6000 cylinders are chosen randomly in
the training set according to class balance (see Section 5.2). Chosen
cylinders are the same for both training from scratch, and transfer
learning tests. Notice that classes from Urb3DCD–V2 and AHN-CD are
not the same and we initialized weights with those issued from the
Urb3DCD–V2 pre-training, except for the last layer of the network,
which gives the final label. This last layer is initialized randomly as for
the whole network when trained from scratch. Pre-trained weights are
taken from Siamese KPConv with shared weight configuration trained
on the sub-dataset Urb3DCD–V2-1 (low-density LiDAR), with input
cylinders of 50 m in radius (𝜗𝜛0=1 m). Even if the results are slightly
higher when weights are not shared, the shared weights configuration
provides better generalization capacities according to our experimental
observations. Based on this figure, we can make several observations.
The proposed fine-tuning strategy allows us to reduce the number of
cylinders to 100, to achieve the same score. It should be noticed that
our fine-tuning is straightforward, and one could expect better results
using domain adaptation or meta-learning (Rußwurm et al., 2020). We
have also observed that using more than 100 training cylinders did
not improve the results further. This is due to an overfitting situation
faced by our training procedure since we do not consider a random
drawing for cylinders selection at each epoch, conversely to the process
proposed by Thomas et al. (2019) that requires up to 360,000 cylinders
in total (considering 60 epochs) and that was followed in Section 5.
Improving the simulator to generate data closer to real data (in terms
of resolution, noise, and classes) would definitely help, but this requires
knowing the target data in advance, which is not realistic in all use
cases.

7. Conclusion

In this study we have presented an original deep neural network,
called Siamese KPConv, dedicated to change detection and categoriza-
tion on 3D point clouds. We build upon successful deep components
such as a Siamese network and Kernel Point Convolution to elaborate
the first, to our knowledge, deep network able to cope with pairs
of raw 3D point clouds and perform change segmentation task. We
conducted various experiments in an urban environment using real
and synthetic datasets. The latter were generated thanks to a simulator
also introduced in this paper, that extends de Gélis et al. (2021b) to 6
different classes of change concerning buildings, vegetation and mobile
objects. This enabled us to create different datasets with various quality
gathered in the Urb3DCD–V2 product.

In addition, tests were carried out on AHN-CD, a real dataset we
built from AHN products, a series of national surveys on the Nether-
lands. For each dataset, our technique outperforms the state-of-the-art
with a significant margin, around 30% of mean IoU over classes of
change. Since the best existing method before our Siamese KPConv

Fig. 15. Comparison between training from scratch and using pre-trained weights
learned on a simulated dataset of Siamese KPConv. The mean of IoU over classes of
change is given as a function of the number of cylinders of 50 m in diameter given as
input. In red, the best results obtained with Siamese KPConv trained from scratch over
6000 cylinders with random drawing. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

relies on the traditional machine learning algorithm trained on hand-
crafted features, as reported in de Gélis et al. (2021b), and there is no
deep learning method dealing with change detection and categorization
over raw 3D PCs, we have also been inspired by the literature to provide
as baselines two different networks (a Siamese and a Fully-Connected
(FC) network with early fusion) on 2D rasterization of PCs (DSMs). Our
method consistently leads to significant improvement, between 15%
to 30% in mean of IoU over classes of change when compared with
the best deep baseline. Furthermore, an adapted version of Siamese
KPConv for the change classification task outperforms state-of-the-art
methods including deep learning based networks on both synthetic and
real (Change3D) datasets.

In a last part, we assessed the transfer learning capacity of the
network when trained on different conditions of acquisition than those
faced in the test set. When directly transferring without retraining
from the multi-sensor dataset to the LiDAR with low density, obtained
results are higher than the traditional machine learning results without
transfer, i.e., trained on the target data. We also evaluated the benefit
of pre-training the network on simulated dataset to decrease the size
of training set needed on the real data. Thanks to pre-training, only
less than 1/3000 of cylinders from the target domain are needed to
reach the maximal score. It significantly reduces the burden of manual
annotation.

To the best of our knowledge, our work is the first to deal with
deep learning for multiple change segmentation over 3D PCs. While
our method shows some promising results on both synthetic and real
datasets, and good generalization capabilities, it remains dependent
on the amount and quality of the labels in the training set. Thus, in
future work, we plan to deal with the challenging annotation issue by
exploring semi-supervised or even unsupervised learning approaches
through self-supervision.
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Table 8
Per-class IoU scores on Urb3DCD–V2 low density LiDAR dataset. DSM-based methods are adaptation of Daudt et al. (2018) networks to DSM inspired by Zhang et al. (2019)
works. Results are given in %. Veg. stands for vegetation.
Method Unchanged New building Demolition New veg. Veg. growth Missing veg. Mobile object

Siamese KPConv (ours) 95.82 ± 0.48 86.68 ± 0.47 78.66 ± 0.47 93.16 ± 0.27 65.17 ± 1.37 65.46 ± 0.93 91.55 ± 0.60
Pseudo-Siamese KPConv (ours) 95.20 ± 0.18 86.23 ± 1.37 76.08 ± 0.54 92.98 ± 0.95 55.96 ± 9.41 63.50 ± 1.41 91.88 ± 0.71

DSM-Siamese 93.21 ± 0.11 86.14 ± 0.65 69.85 ± 1.46 70.69 ± 1.35 8.92 ± 15.46 60.71 ± 0.74 8.14 ± 5.42
DSM-Pseudo-Siamese 93.44 ± 0.23 84.65 ± 2.05 68.41 ± 1.77 70.38 ± 4.98 15.42 ± 13.81 59.77 ± 3.32 33.15 ± 29.12
DSM-FC-EF 94.39 ± 0.12 91.23 ± 0.31 71.15 ± 0.99 68.56 ± 3.92 1.89 ± 2.82 62.34 ± 1.23 46.70 ± 3.49
RF (Tran et al., 2018) 92.72 ± 0.01 73.16 ± 0.02 64.60 ± 0.06 75.17 ± 0.06 19.78 ± 0.30 7.78 ± 0.02 73.71 ± 0.63

Table 9
Per-class IoU scores on Urb3DCD–V2 MS dataset. DSM-based methods are adaptation of Daudt et al. (2018) networks to DSM inspired by Zhang et al. (2019) works. Results are
given in %. Veg. stands for vegetation.
Method Unchanged New building Demolition New veg. Veg. growth Missing veg. Mobile object

Siamese KPConv (ours) 91.68 ± 1.38 55.90 ± 15.65 66.80 ± 0.44 70.94 ± 11.07 42.50 ± 4.88 48.43 ± 4.35 66.74 ± 2.39
Pseudo-Siamese KPConv (ours) 95.52 ± 0.19 83.34 ± 2.21 76.22 ± 1.08 85.76 ± 0.50 59.35 ± 1.00 57.55 ± 0.89 81.98 ± 0.87

DSM-Siamese 92.85 ± 0.11 87.08 ± 0.70 66.10 ± 0.59 67.47 ± 2.69 1.78 ± 3.09 58.93 ± 0.82 13.51 ± 23.39
DSM-Pseudo-Siamese 93.10 ± 0.42 84.73 ± 1.74 63.33 ± 5.59 62.82 ± 9.71 13.49 ± 10.71 35.22 ± 24.53 20.02 ± 20.42
DSM-FC-EF 93.99 ± 0.12 90.57 ± 0.61 71.15 ± 1.22 58.74 ± 0.76 6.31 ± 4.49 62.82 ± 0.68 43.96 ± 4.84
RF (Tran et al., 2018) 91.59 ± 0.00 68.96 ± 0.01 58.78 ± 0.02 72.65 ± 0.03 13.88 ± 0.09 4.26 ± 0.00 62.31 ± 0.07

Fig. 11. Visual change detection results on Urb3DCD–V2 MS sub-dataset: (a–b) the two input point clouds; (c) Ground truth: simulated changes; (d) RF (Tran et al., 2018) results;
(e) DSM-FC-EF (adaptation of Daudt et al. (2018) FC-EF to DSM inspired by Zhang et al. (2019) works) results; (f) our results with Pseudo-Siamese KPConv. Regions of interest
specifically discussed in the text are highlighted with ellipses.

other methods. A significant gap (around 31% of mIoU𝜔𝜀) between
our results and RF persists on this real dataset. Similarly to simulated
datasets, the FC network with early fusion performs better than Siamese
networks on DSMs, with lower scores, however, than our method. As
can be seen in Fig. 13, Pseudo-Siamese KPConv predictions (13d) are
globally similar to the ground truth (13c). Finally, scores of all methods
are lower compared to results on Urb3DCD–V2 datasets, and this will
be further discussed in Section 6.1.

As far as computation time is concerned, we report an inference
time for Siamese KPConv of about 30 min in a single GPU computer
(Nvidia Tesla V100 SXM2 16 GB) for cylinders of 25 m in radius in
the test area of Fig. 6. The test set corresponds to ω 27,000 cylinders
extracted from the pair of original PCs, i.e., a total of around 34 and 81
millions of points for each PC respectively, resulting in about 9 millions
points in each PC after the first sub-sampling step. The training stage
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et al., 2020; Zheng et al., 2021) or GANs (Niu et al., 2018) are used as 
well. Self-supervised learning strategies have shown great success 
recently, including for change detection task. In Saha et al. (2022), the 
authors take the advantage of the under-representation of changed areas 
and of the multi-sensor configuration to force the network to learn 
similar features in patches from the same spatial location and different 
features for two random patches through a contrastive loss. Contrastive 
learning is also used at super-pixel level (Chen and Bruzzone, 2022) or to 
separate features from similar and dissimilar patches generated using an 
unsupervised image segmentation algorithm (Cai et al., 2021). Leenstra 
et al. (2021) experimented two different pre-text tasks: overlapping and 
non-overlapping patches discrimination, and minimizing the difference 
between overlapping patches in the feature space. Notice that the second 
task seems to bring better change detection results, this is in line with the 
work of Saha et al. (2022). Dong et al. (2020) make use of the 
discriminator of a GAN trained to differentiate samples from bi-temporal 
images. When image time series are available, the prediction of the 
natural order of images seems to be a suitable pre-text task for change 
detection (Saha et al., 2022). Pre-trained models can also be used to 
generate latent features further transformed in the final change map. 
Building upon this idea, Saha et al. (2019) propose to adapt the 
well-known CVA algorithm (Malila, 1980) to deep latent features with 
Deep Change Vector Analysis (DCVA) method. A deep change magni-
tude coefficient is computed for each pixel from automatically selected 
deep features. These pixel-wise coefficients, named the latent change 
map, are then converted to the final change map through thresholding. 
Let us also outline that in the literature, different other strategies are 
experimented to generate the latent change map using features simi-
larity analysis (Zhang et al., 2016; Chen and Bruzzone, 2022), slow 
features analysis (Du et al., 2019), features distance combined with 
mutual information metric (Zheng et al., 2021), multi-scale feature map 
fusion (Li et al., 2022b). Thresholding operation is very common to 
obtain the final change map (Liu et al., 2016; Du et al., 2019; Chen and 
Bruzzone, 2022; Zheng et al., 2021), but clustering is also used for bi-
nary (Zhang et al., 2016; Lv et al., 2018; Touati et al., 2020) or 
multi-class change identification (Wu et al., 2022). In many use cases, a 
simple thresholding is enough to achieve interesting results. However, 
since it is only able to extract binary change information, it cannot deal 
with more complex scenarios (where various kinds of change are 
observed or more semantics are needed). 

Following the analysis of the state-of-the-art, we propose to rely on 
DCVA (Saha et al., 2019) to build an unsupervised deep learning method 
for 3D PCs change detection. Given the interesting results achieved by 
self-supervised learning for 2D images change detection, we will adapt 
the idea of Saha et al. (2022) for 3D particular data. 

3. Methodology 

Our proposed method is fully unsupervised and is composed of two 
major steps, as described in Fig. 1 and detailed in sections 3.1 and 3.2, 
respectively. The first one consists in extracting deep features that will 
be compared in the second step to extract changes. In the first stage, a 
network is trained to segment each PC individually using a self- 
supervised learning strategy. In this study, to adapt such a framework 
to 3D PCs, we use the Kernel Point – Fully Convolutional Neural 
Network (KP–FCNN) (Thomas et al., 2019) as the backbone for the deep 
feature extraction part. Indeed, this network, based on Kernel Point 
Convolution (KPConv), showed interesting results even when dealing 
with the remote sensing of large scenes (Varney et al., 2020). Further-
more, the architecture is similar to 2D architectures, except that 2D 
convolutions are replaced by KPConv ones. Based on kernel points, these 
convolutions are specially designed to extract features from 3D PCs. In 
the second part, we use DCVA to compare deep features and achieve 3D 

PC change detection. 
We will denote P a PC and F l its associate features at the layer l →

↑0…L↓ of the network symbolized by fKP-FCNN. The index 1 (resp. 2) 
corresponds to the older PC noted P 1 (resp. newer PC noted P 2) and N 
denotes the number of points p in the PC P . We assume that P 1 and P 2 
are registered together. To do this, a traditional flowchart like the Iter-
ative Closest Point (Besl and McKay, 1992) algorithm can be used for 
example. 

3.1. Training deep feature extraction: self-supervision 

Inspired by Saha et al. (2022), we propose a self-supervised approach 
that does not require complementary data to train the feature extraction 
network. While in Saha et al. (2022), self-supervised learning idea is 
based on learning to extract similar features from very different SAR and 
optical acquisitions from a same scene, we thought the variation in 3D 
points distribution may also be an advantage. Let us note that even in 
unchanged parts, 3D PCs may have different distributions due to the 
various acquisition plans, sensors, weather conditions, etc. Although 
differences in distributions make the direct comparison of PCs impos-
sible, this property can be an asset for training a network to predict 
similar attributes over an unchanged area regardless of distribution. 

This is the idea of the self-supervised part. The network is trained 
using three different losses on an unlabeled training set from the same 
two campaigns of acquisition as the testing set. At each iteration, the 
back-propagation of the gradient is made using alternatively one of the 
three losses. Thereby, in each iteration, a batch of B tiles of the older PC, 
denoted as X 1 ↔

)
x1

1ω…ω xB
1
[
, and the corresponding B tiles of the 

newer PC, X 2 ↔
)
x1

2ω…ω xB
2
[
, are independently given to the network, 

resulting in features y: 

yb
1 ↔ fKP↗FCNN↘xb

1≃ (1)  

yb
2 ↔ fKP↗FCNN↘xb

2≃ (2)  

where yb
1 and yb

2 have the dimension Nb
1 ⇐ K and Nb

2 ⇐ K, respectively. We 
recall that Nb

1 and Nb
2 are the number of points in the corresponding tiles. 

Fig. 1. Overview of the proposed method.  
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types present in the selected area of AHN dataset. Indeed, Urb3DCD 
dataset contains buildings from a french city center. Consequently, the 
train and test areas differ significantly in this transfer learning experi-
ment. Notably, AHN3 data (time 1) contains a glasshouse. The same 
problem occurs with SSST-DCVA methods, since H3D PCs have different 
resolution and quality than AHN PCs. This shows the advantage of 
training directly on a dataset with similar properties to the test set and 
using recent developments in self-supervised learning. However, when 
compared to the supervised Siamese KPConv network, unsupervised 
methods can still largely be improved. The main differences of SSL- 
DCVA with the ground truth are visible on small objects such as vehi-
cles, road signs or vegetation (see Fig. 3(c) and (d)). Furthermore, as can 
be seen in the buildings on the left side of Fig. 3 and right side of Fig. 4 
(c), some omissions remain on new buildings with a flat roof. In the 
mono-date segmentation of the PC realized before the DCVA step, the 
flat roofs are classified in the same class as ground so, when comparing 
features, no changes are highlighted. This raises the difficulty of late- 
fusion change identification. Indeed, errors in the feature extraction 
step are propagated in the comparison step. Finally, some false de-
tections are visible on the ground, forming a large trapezium (see Fig. 3 
(d)). This is due to changes in the orientation of the ground surface. 

Our method encounters difficulties in unchanged vegetated areas 
(see the top of zoom 2 in Fig. 4(i)) certainly because of the complexity of 
LiDAR data in such areas with a high variation of point distribution even 
without changes in the semantics of objects. This results in a mixture of 
points predicted as changed and unchanged. Furthermore, these vege-
tated areas may have grown, and the acquisition not realized in the same 
season implies some differences on the 3D representation of trees. Note 
that the same problems occur with the other learning-based methods 
(see the top of zoom 2 in Fig. 4(j and k). Looking at Fig. 4(l), we can 
observe that C2C method is not better in this zoom where the vegetation 
has been removed. Indeed, in AHN3 some points are acquired from the 
ground to the top of the tree canopy thanks to the LiDAR sensor, thereby 
the point-to-point distance is not an efficient indicator for changes. 
Finally, it seems that SSL-DCVA (as well as SSST-DCVA) is more prone to 
commission than omission changes, while C2C shows the opposite 
behavior (see Fig. 3(d,e,i) or Fig. 4(i,j,l)). From the user point of view, 
we believe that it is better to obtain more commissions than omissions. 
Indeed, as changed parts are rare compared to unchanged ones in gen-
eral, it is faster to check errors and correct changed predictions than 
unchanged ones. 

The point-to-point nearest neighbor correspondence lacks precision 
in the presence of occlusion in the 3D PCs. Indeed, due to the geometry 
of acquisition, some occlusions may appear in PCs, these hidden parts 
may not be similar in the two compared PCs leading to difficulties when 
comparing points in the DCVA part. 

Once again SSL-DCVA seems more interesting than SSST-DCVA when 
looking at training time. SSST-DCVA takes about 17 h to train on H3D 
dataset, while SSL-DCVA only requires about 9 min to train (see 
Table 1). The DCVA part on the manually annotated test set takes about 
40 s. 

Following our experimental assessment, we have identified two 

difficulties faced by our method. The first one is related to the hypothesis 
of rare changes required for the temporal consistency loss (Equation 
(8)). Although already used in the literature (Saha et al., 2022), this 
assumption should be verified considering the training set of the studied 
dataset, whereas the test set should contain enough changes so that the 
thresholding operation is valid. For example, this assumption prevents 
us from applying the presented method on the Urb3DCD dataset (de 
G!elis et al., 2021) because it contains a high number of changed objects 
in the training set. Then, the other issue with our method comes from the 
DCVA part which relies on a point-to-point comparison based on the 
nearest point. This point comparison is not optimal in occluded parts as 
well as in dense urban areas. Let us note that this issue has been already 
mentioned when describing C2C misclassifications (see region of inter-
est in Fig. 3(i)). Even if DCVA comparison relies on multiple deep fea-
tures, avoiding the problem when the two points being compared have 
different latent embeddings, the problem remains when the latent 
embedding of the two points under comparison is similar, meaning the 
same class is predicted by the back-bone network (whether trained by 
transfer learning or self-supervision). Indeed, in this case, the deep 
magnitude coefficient computed from deep features will be similar. 

Finally, based on the state-of-the-art in unsupervised 2D image 
change detection, we proposed to adapt the SSL strategy developed in 
Saha et al. (2022) to 3D PCs change detection task. Our study showed 
the possibilities offered by SSL to tackle this task. However, there is still 
room for improvement. Indeed, different SSL strategies have been 
already developed in the literature for 3D point clouds understanding 
(Sauder and Sievers, 2019; Xie et al., 2020; Alliegro et al., 2021; Chen 
et al., 2021; Zhang et al., 2021b) or 2D image change detection (Leenstra 
et al., 2021; Cai et al., 2021; Chen and Bruzzone, 2022; Saha et al., 
2022). SSL is vast, and many different strategies can be elaborated to 
train a neural network to extract interesting features. Further SSL studies 
can be conducted to tackle 3D PCs change detection task based on the 
existing literature in 3D PCs understanding and/or 2D image change 
detection. Besides, further development of pre-text tasks directly 
designed for 3D PCs change detection task would be relevant. For 
example, a possible improvement would be to incorporate a 
change-related task in the SSL training of the network, so that the 
learned features are directly related to change. Which will enable us to 
get rid of the nearest point comparison, one of the possible difficulties of 
our method. 

5. Conclusion 

In this paper, we have proposed a method able to detect changes into 
raw 3D PCs using unsupervised deep learning, i.e., without any ground 
truth annotation for the training step. This unsupervised change detec-
tion in 3D PCs is challenging due to the lack of point-to-point corre-
spondence between pre-change and post-change 3D points and the 
proposed method effectively addressed this problem. It further exploits 
self-supervised learning through deep clustering and contrastive 
learning to effectively characterize the target area. The method also 
relies on an adaptation of the deep change vector analysis framework to 

Table 1 
Quantitative results on AHN-CD dataset with both unsupervised and supervised methods. Approximate computation times are provided for the training and testing (on 
the manually annotated part) step.    

mAcc mIoU IoU (%) Computation time 

(%) (%) Unchanged Changed Training Testing 

Unsupervised SSL-DCVA (ours) 85.20 74.14 78.91 69.38 9 min 40 s 
SSST-DCVA (ours) 81.88 66.93 70.02 63.85 17 h 40 s 
Siamese KPConv transfer (de G!elis et al., 2023) 81.83 69.76 75.80 63.73 28 h 25 s 
k-means (features from Tran et al. (2018)) 81.00 66.81 71.11 62.51 40 min 3 min 
M3C2 (Lague et al., 2013) 51.77 43.56 3.66 39.90 – 5 s 
C2C (Girardeau-Montaut et al., 2005) 76.67 65.16 76.98 53.34 – 5 s 

Supervised Siamese KPConv (de G!elis et al., 2023) 94.23 89.96 92.27 87.65 15 h 25 s  

I. de G!elis et al.                                                                                                                                                                                                                                 
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Fig. 1. Illustration of our proposed method: DC3DCD. It is trained by alternatively clustering deep features to match a pseudo-label to each point of PC 2. These pseudo-labels
are used to optimize the back-bone trainable parameters.

Fig. 2. Back-bone architectures used in our experiments.

• Point distribution represented by point normals and information
on the distribution of points in the neighborhood (i.e., linearity,
planarity, and omnivariance).

• Height information characterized by rank of the point on vertical
axis in the neighborhood, maximum range of elevation of points
in the neighborhood, and normalized height according to the
local Digital Terrain Model (DTM) (rasterization of the PC at the
ground level).

• Change information described through a feature called stability
(ratio of the number of points in the neighborhood of the current
PC to the number of points in the neighborhood in the other PC).

We refer the reader to the original paper (Tran et al., 2018) for a
detailed description of these features.

2.2.4. Training considerations
Change segmentation task implies assigning a pseudo-label to each

point of the second PC (of pairs of the training set). Considering the size
of the training set, to fit in memory, a mini-batch 𝜔-means (Sculley,
2010) clustering is used. The principle of splitting the largest cluster
when an empty cluster appears is used as in DeepCluster.

Change detection datasets are highly imbalanced. To avoid falling
in a trivial solution where the back-bone predicts all points with the
same label, after each clustering step weights 𝜀

𝜔
(considering pseudo-

labels distribution) are computed. These weights are further used to
both select training cylinders and weight the loss (∱

𝜗𝜛𝜛
). Let us note

that this cylinder selection process was also applied in the supervised
context (de Gélis et al., 2023b) (on the real labels though). It aims at
giving more training samples of underrepresented pseudo-clusters. It
also acts as a kind of data augmentation because from one epoch to
another, selected cylinders differ according to the random drawing of
the cylinder’s central point. Without this trick, the method is likely to
collapse to a single class prediction.

During the training step, data augmentation appears to be crucial
for stability and performance of the method. In particular, the follow-
ing data augmentation strategies are used: random cylinders rotation
around the vertical axis (same angle for both cylinders of a pair), and
addition of a Gaussian noise at point level.

2.3. From predicted pseudo-labels to real labels

The above training using DC3DCD method is fully unsupervised,
thereby no use of a ground truth is required. At the end of the overall
training process, the back-bone predicts labels for all points of the
second PC according to the change. Predicted labels do not directly
correspond to the real labels. There is an oversegmentation of PCs
inducted by the choice of 𝜚, the number of pseudo-clusters, which is
often large compared to the number of real classes. By opting for such
an oversegmentation setting, we expect to be able to address various
use cases with different size and precision of classes. One real class
is then composed of several predicted clusters, while we assume a
predicted cluster to contain only one real class. To map a real label onto

UNSUPERVISED LEARNING

• Another recipe: DeepCluster
• Adaptation to our settings
• Unsupervised method that can be used 

in a weakly supervised/ interactive mode

https://doi.org/10.1016/j.isprsjprs.2023.10.022

Chapter 4 – Unsupervised change detection

Figure 4.7 – Illustration of DeepCluster method. Source: Illustration from Caron
et al. (2018).

(Krizhevsky et al., 2017) and VGG-16 (Simonyan and Zisserman, 2014)) on ImageNet
(Deng et al., 2009) or YFCC100M (Thomee et al., 2016) images datasets.

In the following, we adapt this principle to 3D PCs change detection.

DC3DCD: unsupervised learning for 3D multiple change extraction

Whereas the task and the data (2D image classification) of DeepCluster is far from
3D PCs multiple change segmentation, we nevertheless decided to adapt this method
to our task and particular data. By replacing the CNN by a 3D PCs change detection
back-bone, some change-related features can be extracted. Thereby, the clustering of
these deep features results in change-related pseudo-clusters. We further rely on these
pseudo-clusters to optimize the trainable parameters ω of the change detection back-bone.
Figure 4.8 illustrates our method called DeepCluster 3D Change Detection (DC3DCD).

Algorithm 2 Fully unsupervised DeepCluster 3DCD training
Initialize the back-bone trainable parameters ω
for e → 1 to E do

Run mini-batch k-means to obtain centroids C on the whole training set

Assign to each point of the training set a pseudo-cluster

Replace parameters of the prototype layer by C
Compute the weights Wk considering pseudo-label distribution in the training set

Training sample selection: random drawing considering Wk

for i → 1 to I do

Use LNLL (weighted by Wk) to modulate the back-bone trainable parameters (ω) considering pseudo-labels

end for

end for

The overall training process of our method is given in the Algorithm 2. Even if the
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Unchanged Missing 
vegetation Unchanged New 

building
Mobile 
Object

PC date 1 PC date 2

K clusters annotation5 clusters annotation

Figure 4.9 – Weakly supervised mapping of predicted clusters to real classes.
For the K predicted clusters, a mapping with the corresponding real class is performed
by a user to obtain the final change segmentation of the PC. 5 mappings are provided for
the sake of illustration. Segmenting the whole dataset requires K annotations only. This
is far less than the millions of points that need to be annotated in order to build training
and validation sets in a supervised setting.

supervised, as the required K annotations are much smaller than the millions of points
contained in the dataset. In practice, for the experimental assessment of our method, we
map a predicted cluster onto a real class taking into account the real majority class it
contains.

4.4.2 Experimental results

4.4.2.1 Experimental settings and protocol

Below, we detail how we fix the main hyper-parameters and experimental set-up.
• Number of pseudo-clusters K: As shown in di!erent studies related to Deep-

Cluster (Caron et al., 2018; Mustapha et al., 2022), the choice of the number of
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Fig. 8. Qualitative results on the manually annotated sub-part of AHN-CD dataset: (a–b) PCs at date 1 and 2; (c) ground truth; 𝜔-means results (d) and errors (f); DC3DCD
results (e) and errors (g) using the Encoder Fusion SiamKPConv architecture and the 10 hand-crafted features in input. Regions of interest specifically discussed in the text are
highlighted with ellipses.

Table 5
Quantitative comparison on a binary change segmentation task on the manually annotated sub-part of AHN-CD dataset..

Method mAcc IoU (%)

(%) Unchanged Changed

Supervised Siamese KPConv (de Gélis et al., 2023b) 97.08 95.39 92.95
Encoder Fusion SiamKPConv (de Gélis et al., 2023a) 96.75 94.79 92.10

Unsupervised SSL-DCVA (de Gélis et al., 2023c) 85.20 78.91 69.38
SSST-DCVA (de Gélis et al., 2023c) 81.88 70.02 63.85

Weakly Supervised DC3DCD Encoder Fusion SiamKPConv (with input features) 94.43 91.24 86.96

convincing results. Unsupervised 3D PCs change detection is still open
and complex and in the following, we point out some observations and
discussions about possible improvements.

4.1. Importance of network’s architectures and input features

We saw in the result section that the choice of the back-bone archi-
tecture and the addition of hand-crafted features as input along with
3D point coordinates are crucial. This is in agreement with the original
publication of DeepCluster, where image gradients are provided as
input to obtain accurate results (Caron et al., 2018). These results in
an unsupervised context also emphasizes conclusions of de Gélis et al.
(2023a) on the necessity of applying convolution on features difference.
To explain this, let us note that the unsupervised context is a largely

unconstrained problem. While the annotation allows counterbalancing
architectures weaknesses, this is indeed no longer possible for the
unsupervised setting. Thereby the choice of an architecture that more
specially extracts change-related features through convolutions of dif-
ference of features from both inputs at multiple scales, and the addition
of well-designed hand-crafted features, allows guiding the training of
the network toward a relevant minimum, leading to an accurate change
segmentation.

4.2. Improving dc3dcd with contrastive learning

As mentioned, the problem in an unsupervised setting is to train
a network to extract appropriate features for a specific task. In a
task involving comparison of similar and dissimilar data (like change
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Fig. 7. Visual change detection results on Urb3DCD-V2 low density LiDAR sub-dataset (area 2): (a–b) the two input point clouds; (c) ground truth (GT): simulated changes;
(d) 𝜔-means results; (e) DC3DCD with the Encoder Fusion SiamKPConv architecture results; (f) DC3DCD with the Encoder Fusion SiamKPConv architecture and 10 hand-crafted input
features.

Table 3
Qualitative assessment of DC3DCD on the manually annotated sub-part of AHN-CD dataset. Top: supervised methods. DSM-based methods are adaptation
of Daudt et al. (2018) networks to DSM inspired by Zhang et al. (2019) and RF refers to Random Forests. In supervised settings, the training is performed
on the semi-automatically annotated AHN-CD dataset containing some errors (see de Gélis et al. (2023b)). Bottom: Weakly supervised methods with 𝜔-means
and our proposed DC3DCD with Encoder Fusion SiamKPConv architecture and with the addition of 10 hand-crafted features as input to the network.

Method mAcc (%) mIoU
𝜀𝜗
(%)

Supervised

Siamese KPConv (de Gélis et al., 2023b) 85.65 ± 1.55 72.95 ± 2.05
Encoder Fusion SiamKPConv (de Gélis et al., 2023a) 90.26 ± 0.22 75.00 ± 0.74
DSM-Siamese 50.87 ± 1.15 30.96 ± 2.48
DSM-FC-EF 71.47 ± 1.43 45.57 ± 0.98
RF (Tran et al., 2018) 47.94 ± 0.02 29.45 ± 0.02

Weakly Sup. 𝜔-means 70.07 ± 0.56 53.12 ± 0.79
DC3DCD Encoder Fusion SiamKPConv (with input features) 83.18 ± 1.10 66.69 ± 2.19

Table 4
Per class IoU DC3DCD results on the manually annotated testing part of AHN-CD dataset given in %. Top: supervised methods. In supervised settings, the training is performed
on the semi-automatically annotated AHN-CD dataset containing some errors (see de Gélis et al. (2023b)). Bottom: Weakly supervised methods with 𝜔-means and our proposed
DC3DCD with Encoder Fusion SiamKPConv architecture and with the addition of 10 hand-crafted features as input to the network.

Method Per class IoU (%)

Unchanged New building Demolition New clutter

Su
pe
rv
is
ed

Siamese KPConv (de Gélis et al., 2023b) 89.75 ± 2.18 82.77 ± 5.38 86.44 ± 0.88 46.65 ± 0.16
Encoder Fusion SiamKPConv (de Gélis et al., 2023a) 94.79 ± 0.34 95.31 ± 1.95 88.87 ± 1.59 41.16 ± 1.30
DSM-Siamese 77.10 ± 1.51 76.77 ± 0.79 4.91 ± 8.33 11.20 ± 1.71
DSM-FC-EF 70.77 ± 1.13 90.32 ± 0.61 30.58 ± 1.76 15.81 ± 0.81
RF (Tran et al., 2018) 78.24 ± 0.00 74.64 ± 0.03 0.00 ± 0.00 13.72 ± 0.06

W
S 𝜔-means 84.13 ± 0.49 83.13 ± 0.89 55.40 ± 0.50 20.84 ± 1.00

DC3DCD Encoder Fusion SiamKPConv (with input features) 91.34 ± 1.21 89.91 ± 0.72 69.52 ± 4.97 40.63 ± 0.97

https://doi.org/10.1016/j.isprsjprs.2023.10.022
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AHN dataset for real data
3.3. Experimental assessment

Method mAcc mIoUch

Siamese KPConv (ours) 85.65 ± 1.55 72.95 ± 2.05
Pseudo-Siamese KPConv (ours) 87.87 ± 1.89 69.33 ± 1.99

DSM-Siamese 50.87 ± 1.15 30.96 ± 2.48
DSM-Pseudo-Siamese 70.71 ± 5.09 48.85 ± 7.03

DSM-FC-EF 71.47 ± 1.43 45.57 ± 0.98
RF 47.94 ± 0.02 29.45 ± 0.02

Table 3.9 – General results (given in %) on the AHN-CD dataset sub-part that
has been manually annotated. DSM-based methods are adaptation of Daudt et al.,
2018 networks to DSM inspired by Zhang et al., 2019 works.

on unchanged, new building and demolition classes. Concerning the new clutter class,
results are less impressive but still better than other methods. However, as stated before,
this class is a mix of several types of objects. Notice that these results are obtained with
the network trained on the AHN-CD dataset without manual correction of the ground
truth. Hence, it demonstrates the robustness of our method to errors in the training
database.

To improve change classification results, it would also be interesting to add RGB
information or LiDAR intensity, available in the AHN data, as input to the network.

As for computation time, we report an inference time for Siamese KPConv of about
30 minutes in a single GPU computer (Nvidia Tesla V100 SXM2 16 GB) for cylinders of
25 m in radius in the testing area of Figure 1.6. The testing set corresponds to around
27,000 cylinders extracted from the pair of original PCs, i.e., a total of around 34 and 81
million of points for each PC respectively, resulting in about 9 millions points in each PC
after the first sub-sampling step. The training stage takes about one day on AHN-CD
dataset with 6,000 cylinders in the training set and 500 in the validation set.
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TABLE III
PER-CLASS IOU SCORES OF THE THREE SIAMESE KPCONV EVOLUTIONS ON URB3DCD-V2 LOW DENSITY LIDAR DATASET. RESULTS ARE GIVEN

IN %. VEG. STANDS FOR VEGETATION; INPUT FEAT. FOR INPUT FEATURES; SKPCONV FOR SIAMESE KPCONV.

Method Per class IoU (%)
Unchanged New building Demolition New veg. Veg. growth Missing veg. Mobile Object

Siamese KPConv [19] 95.82 ± 0.48 86.67 ± 0.47 78.66 ± 0.47 93.16 ± 0.27 65.18 ± 1.37 65.46 ± 0.93 91.55 ± 0.60
SKPConv (+10 input feat.) 97.55 ± 0.11 95.17 ± 0.21 84.25 ± 0.59 95.23 ± 0.21 66.02 ± 1.33 74.88 ± 1.03 93.38 ± 0.74

OneConvFusion 96.95 ± 0.34 96.06 ± 0.27 79.63 ± 1.48 95.53 ± 0.77 61.12 ± 2.13 65.79 ± 2.61 92.89 ± 1.95
Triplet KPConv 97.41 ± 0.24 95.73 ± 0.67 81.71 ± 1.47 96.24 ± 0.37 64.85 ± 1.46 73.02 ± 1.18 92.90 ± 2.47

Encoder Fusion SKPConv 97.47 ± 0.04 96.68 ± 0.30 82.29 ± 0.16 96.52 ± 0.03 67.76 ± 1.51 73.50 ± 0.81 94.37 ± 0.54

TABLE IV
GENERAL RESULTS IN % OF THE THREE SIAMESE KPCONV

EVOLUTIONS ON THE MANUALLY CLEANED AHN-CD DATASET.

Method mAcc (%) mIoUch (%)
Siamese KPConv [19] 85.65 ± 1.55 70.65 ± 2.05

Siamese KPConv (+10 input features) 88.47 ± 1.09 73.29 ± 1.32
OneConvFusion 90.03 ± 0.38 75.62 ± 1.04
Triplet KPConv 88.25 ± 0.23 72.37 ± 0.55

Encoder Fusion SiamKPConv 90.26 ± 0.22 75.00 ± 0.74

TABLE V
NUMBER OF PARAMETERS IN EACH PRESENTED ARCHITECTURES

COMPARED TO ORIGINAL SIAMESE KPCONV NETWORK.

Method Number of parameters
Siamese KPConv [19] 18,441,152

Siamese KPConv (+10 input features) 18,457,152
OneConvFusion 18,441,152
Triplet KPConv 39,753,536

Encoder Fusion SiamKPConv 39,841,152

SiamKPConv provides better results than the Triplet network
shows that combining both mono-date semantic features and
change features as input to convolutional layers can extract
useful discriminative features for the change segmentation
task. Let us note that, both Triplet KPConv and Encoder
Fusion SiamKPConv get results close to (or even outperform)
Siamese KPConv network fed with hand-crafted features.

Finally, we tried to add hand-crafted features as input to
Encoder Fusion SiamKPConv network, results are only very
slightly improved (less than 1% of mIoUch). This shows that
an architecture more specifically designed for change detection
is capable of extracting discriminative features on its own.
This is especially true for change-related features such as
the Stability which is no longer required in Encoder Fusion
SiamKPConv architecture.

V. CONCLUSION

In this paper, we proposed to enhance change detection
in raw 3D PCs using deep networks. To do so, we suggest
introducing change information earlier in the network in order
to better detect and categorize changes into 3D PCs. A first
proposition to enhance the existing method is to provide some
hand-crafted features as input along with 3D point coordinates.
In particular, we demonstrated that a single addition of a
change-related feature input to Siamese KPConv existing
method allows enhancing of about 3.70% of mean of IoU over
classes change. Then, we propose three new architectures for
change segmentation based on raw 3D PCs that encode also
change information conversely to the current state-of-the-art

that was only incorporating change information in the decoder
step. These three architectures out-perform the current state-
of-the-art methods up to 5.07% of mean of IoU over classes
of change. Thereby, in this paper, we showed the importance
of encoding change information.

As for future works, we mainly see two axes of im-
provement. First one could imagine introducing attention
mechanism for multi-scale fusion of both change-related and
mono-date features, as was already successfully experimented
in recent studies in 2D image change detection [36], [40],
[49]. Investigating transformers [50] is for sure an interesting
perspective for the improvement of our method. However, their
scaling to large remote sensing PCs is often not immediate.
Finally, these architectures need to be trained on large amounts
of data to obtain convincing results. Considering the difficulty
of PCs annotation, the second axis of improvement is to focus
on low-supervised methods for 3D change detection.
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(a) PC 1: AHN3 (b) PC 2: AHN4 (c) GT
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Figure 1.5 – Sample extracted from AHN-CD dataset.

Figure 1.6 – Selected parts of AHN-CD dataset for training, validation and
testing.
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Collaboration with coastal geographers/geomorphologists (Brest)

Figure 1. Panorama and aerial photography of Petit Ailly cliff (Varengeville-sur-Mer) and instrumentation used for the TLS survey
(2016-01-28) (modified from Letortu et al. (2018)).

Class distribution (%)
PC pairs Type Unchanged Erosion Accumulation “No data to compare”

2013-09-25 – 2016-01-28 TLS – TP 51.77 40.57 1.32 6.33
2016-01-28 – 2017-11-02 TP – TLS 66.07 22.43 0.47 11.02
2017-11-02 – 2018-01-16 TLS – TLS 79.65 16.20 3.19 0.96
2018-01-16 – 2020-04-14 TLS – TLS 69.67 29.92 0.00 0.41

Table 2. Varengeville-sur-Mer PC pairs.

of 50 cm is used, and refined to 20 cm for some parts. Thereby
in this study, we mainly focus on extracting movements greater
than 20-50 cm, thus smaller movement like debris falls may be
missed.

3.2 Siamese KPConv network

We propose here to use and assess the recent Siamese KPConv
network for cliff change extraction. This model relies on a deep
Siamese architecture, that has proved its ability to detect and
categorize changes even for remote sensing purposes (Daudt
et al., 2018; Jiang et al., 2020) with 2D satellite images. In
particular Siamese architectures contain an encoder with two
branches. Usually composed of a succession of convolution and
max-pooling operations, each branch extracts features coming
from each input data. To extend the Siamese principle to 3D
PCs, a convolution operation suitable with 3D PCs character-
istics should be used. Indeed, traditional convolution used for
image processing can not be applied here as PCs are not con-
tained into matrices and therefore, the access to neighbors in-
volved in convolutions is less obvious than for structured data
on regular grids as images. Thus, de Gélis et al. (2021) rely
on Kernel Point Convolution (KPConv). These convolutions
are specially designed to extract features from raw 3D PCs by
applying weights thanks to kernel points dispatched into a 3D

ball (Thomas et al., 2019). Max-pooling operations are here re-
placed by strided KPConv acting as a down-sampler of 3D PCs,
thus features can be extracted at different scales.
Siamese KPconv architecture is presented in Figure 3. Like a
usual encoder-decoder with skip connections, Siamese KPConv
also contains skip links between encoder and decoder. Indeed,
at each scale of the decoding part, the difference of extracted
features associated with the corresponding encoding scale (see
Figure 3) are concatenated in the decoder part. Conversely to
2D images where pixels of both images can be easily associ-
ated, in 3D Siamese KPConv the computation of the feature dif-
ference is not obvious since PCs do not contain the same num-
ber of points and are not defined at the same positions, even in
non-changed areas. Authors of Siamese KPConv suggest here
to compute this difference in each point of the second PC by
retrieving features of the corresponding nearest spatial point in
the first PC. More details can be found in their original paper
(de Gélis et al., 2021). Weights between the two branches of
the encoder are shared as it is done when input data are quite
similar. Moreover, sharing weights forces the network to be less
focused on one type of data. As explained in Section 3.1, our
PCs do not come from the same modality between each acquis-
ition. As finally training, validation and test sets do not come
from the same pair, we would like to avoid that each branch of
the encoder only specializes in extracting information for only
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Figure 1. Panorama and aerial photography of Petit Ailly cliff (Varengeville-sur-Mer) and instrumentation used for the TLS survey
(2016-01-28) (modified from Letortu et al. (2018)).

Class distribution (%)
PC pairs Type Unchanged Erosion Accumulation “No data to compare”

2013-09-25 – 2016-01-28 TLS – TP 51.77 40.57 1.32 6.33
2016-01-28 – 2017-11-02 TP – TLS 66.07 22.43 0.47 11.02
2017-11-02 – 2018-01-16 TLS – TLS 79.65 16.20 3.19 0.96
2018-01-16 – 2020-04-14 TLS – TLS 69.67 29.92 0.00 0.41

Table 2. Varengeville-sur-Mer PC pairs.

of 50 cm is used, and refined to 20 cm for some parts. Thereby
in this study, we mainly focus on extracting movements greater
than 20-50 cm, thus smaller movement like debris falls may be
missed.

3.2 Siamese KPConv network

We propose here to use and assess the recent Siamese KPConv
network for cliff change extraction. This model relies on a deep
Siamese architecture, that has proved its ability to detect and
categorize changes even for remote sensing purposes (Daudt
et al., 2018; Jiang et al., 2020) with 2D satellite images. In
particular Siamese architectures contain an encoder with two
branches. Usually composed of a succession of convolution and
max-pooling operations, each branch extracts features coming
from each input data. To extend the Siamese principle to 3D
PCs, a convolution operation suitable with 3D PCs character-
istics should be used. Indeed, traditional convolution used for
image processing can not be applied here as PCs are not con-
tained into matrices and therefore, the access to neighbors in-
volved in convolutions is less obvious than for structured data
on regular grids as images. Thus, de Gélis et al. (2021) rely
on Kernel Point Convolution (KPConv). These convolutions
are specially designed to extract features from raw 3D PCs by
applying weights thanks to kernel points dispatched into a 3D

ball (Thomas et al., 2019). Max-pooling operations are here re-
placed by strided KPConv acting as a down-sampler of 3D PCs,
thus features can be extracted at different scales.
Siamese KPconv architecture is presented in Figure 3. Like a
usual encoder-decoder with skip connections, Siamese KPConv
also contains skip links between encoder and decoder. Indeed,
at each scale of the decoding part, the difference of extracted
features associated with the corresponding encoding scale (see
Figure 3) are concatenated in the decoder part. Conversely to
2D images where pixels of both images can be easily associ-
ated, in 3D Siamese KPConv the computation of the feature dif-
ference is not obvious since PCs do not contain the same num-
ber of points and are not defined at the same positions, even in
non-changed areas. Authors of Siamese KPConv suggest here
to compute this difference in each point of the second PC by
retrieving features of the corresponding nearest spatial point in
the first PC. More details can be found in their original paper
(de Gélis et al., 2021). Weights between the two branches of
the encoder are shared as it is done when input data are quite
similar. Moreover, sharing weights forces the network to be less
focused on one type of data. As explained in Section 3.1, our
PCs do not come from the same modality between each acquis-
ition. As finally training, validation and test sets do not come
from the same pair, we would like to avoid that each branch of
the encoder only specializes in extracting information for only
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Unchanged Erosion Accumulation No data to compare

Figure 2. a) Annotation of the PC from 2016-01-28 with the PC from 2013-09-25, b) West part of Ailly cliff and transect position c)
Transect showing erosion of the cliff with accumulation at the cliff base.

one type of PC. Thus, sharing weights in the encoder allows
us to strengthen the generalization capability of our method, to
deal with both TLS and TP data.

4. RESULTS

4.1 Experimental protocol

4.1.1 Dataset configuration In order to conduct our exper-
imentation, we divide our dataset into three parts dedicated to
training, validation and testing. We recall that data are annot-
ated according to the previous acquisition forming 4 pairs of
PCs. As can be seen in Table 2, each class is not equival-
ently represented in each PCs. As a matter of fact, accumula-
tion class is very rare compared to eroded and even unchanged
areas. Thus the division of the dataset is made in such a way
that each split is as representative as possible of each class of
changes. Thereby, the split of pairs of PCs in each training,
validation and testing set is made as indicated in Table 3. Ac-
cumulation class is less represented in point clouds, thus we
divided the 2017-2018 pair into an eastern and a western part at
the dry valley of Petit Ailly (see Figure 1) to have examples of
accumulation in both the training and in the testing set.

Training set Validation set Testing set
2013-2016

2017-2018 West 2016-2017 2017-2018 East
2018-2020

Table 3. Split of the dataset into training, validation and testing
sets. For each pair of PCs, years relates to the year of acquisition
given in Table 1. The annotation is always given for the second

PC of the pair with regards to the first PC.

4.1.2 Experimental set-up To set-up experiments, we have
to choose the initial sub-sampling rate of PCs, called dl0. Thus,
no matter the type of input PC (TLS or TP), the input PC’s res-
olution at the first layer is always the same. Notice that final
results are interpolated back to initial PC resolution given in
Table 1. In our mind, dl0 should be chosen as small as possible
to stick with PC initial density, while in the same time fitting
with available memory in the Graphical Processing Unit (GPU).
Finally, this first sub-sampling rate is directly linked with the

size of input given to the network. Indeed, as for satellite im-
ages divided into patches, PCs are also sub-divided to feed the
network. Conversely to urban change detection experiments
made with Siamese KPConv, we choose here to divide PCs into
spheres and not vertical cylinders. Indeed, in urban areas, the
motivation of considering cylinders instead of spheres is to be
sure to always include ground in vertical cylinders (de Gélis
et al., 2021). The case of study here is quite different, and
spheres appear more suited than cylinders because they con-
tain less points, allowing to choose a larger radius. We recall
that considering too many points as input for the network leads
to memory capacity issues. Spheres are centered on a point
of the second date PC, thus the radius should not be chosen to
small to ensure to give also points of the first PC in case of
large changes as well as providing enough context. In Thomas
et al. (2019), the authors chose the radius of input sphere of
50 times dl0. However according to our own experiments, best
results were obtained with spheres of 10 m in diameter and dl0
set to 0.15 m. As far as other network hyper-parameters are
concerned, we use the same configuration as in de Gélis et al.
(2021): a Stochastic Gradient Descent (SGD) with momentum
to minimize a point-wise negative log-likelihood loss, with a
batch size of 10, a momentum of 0.98 and an initial learning
rate of 10→2. The learning rate is scheduled to decrease expo-
nentially. A probability dropout of 0.5 in the last classification
layers is set. Also, in order to prevent from over-fitting, we set
a L2 loss regularization with a factor of 10→6. As the dataset is
largely imbalanced, the loss is weighted according to training
set class distribution.
In the following experiment, we decided to normalize input
spheres along X and Y axis by retrieving the minimum value
into the sphere of X and Y axis respectively. As for the ver-
tical Z axis, we do not perform a normalization with regards to
the minimum value in the whole cliff, so to keep information
related to elevation. Indeed, this may help for change classi-
fication, in particular for accumulation class since it is mainly
located at the cliff foot.
We provide a comparison with a popular distance-based method,
Multiscale Model to Model Cloud Comparison (M3C2), giving
a mean surface change along a normal direction (Lague et al.,
2013). Based on this distance, we apply an empirical threshold-
ing at -0.2 m and 0.2 m to extract accumulation, unchanged and
erosion aeras. Even though M3C2 is not specifically designed
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Figure 3. Siamese KPConv network architecture (de Gélis et al., 2021).

to categorize surface changes, this allows to compare Siamese
KPConv quantitative results to another method, it is discussed
in Section 5.1.

4.1.3 Metrics Finally, in order to provide quantitative as-
sessment, we measure the Intersection over Union (IoU) for
each classes as well as the mean IoU (mIoU). The IoU is given
by the following equation:

IoU =
TP

TP + FP + FN
(1)

where TP, TN, FP and FN respectively stand for True Positive,
True Negative, False Positive and False Negative.

4.2 Qualitative and quantitative results

Qualitative results are presented in Figures 4, 5 and 6 corres-
ponding to each part of the testing dataset. As we can see, the
predictions provided by Siamese KPConv prediction are close
to the ground truth. Erosion great structures are well recog-
nized, and even smaller parts of erosion seem to be highlighted
as it can be seen on the right side of Figure 5. Quantitative res-
ults are shown in Table 4. We report results for the three classes
of interest: unchanged, erosion and accumulation. We remind
that the class “no data to compare” is not a class of change and
is a bit subjective as it depends on annotator confidence in ex-
isting surrounding points in an area. In particular, per class IoU
indicates that unchanged area and erosion are mainly well clas-
sified as already shown on qualitative results. Main differences
with the ground truth appear at boundaries of erosion parts and
in some more intricate areas like in the top middle left side of
the Figure 5 where erosion, unchanged and “no data to com-
pare” classes are almost mixed up and cliff structure is more
complex. Accumulation class obtains a lower score in compar-
ison to erosion, surely explained by the only few accumulation
examples available in the whole dataset. Indeed training set
contains only 1.51 % of points for accumulation whereas the
erosion represents 33.83 % of points. Worth noting that testing
set follows the same trend (see Figure 4(a), 5(a) and 6(a)). How-
ever, and as shown in Figure 4, it remains quite well retrieved.
Main confusions for this class appear also at the boundary of
accumulation zone and in “no data to compare” areas where
there are some isolated points predicted as accumulation.
Concerning the “no data to compare” class, main parts classi-
fied as “no data to compare” in the ground truth are also clas-
sified like this by Siamese KPConv. However there seem to be
more areas identified as “no data to compare” by the network.
Indeed, in some parts, only a few points allow the annotator to

be sure that there is or not a change whereas in some other parts,
the identification of change is trickier, or even impossible, so it
has been marked as “no data to compare”. Thereby, ground
truth and prediction should not be strictly compared. Finally, in
Table 4 we also report the mean of IoU over classes of interest
(mIoUint) so the mIoU without the subjective “no data to com-
pare” class.

Per class IoU(%)
Unchanged Erosion Acc. mIoUint

Siam. KPConv 91.94 83.86 70.28 82.03
M3C2 + threshold 95.06 87.23 48.20 68.12

Table 4. Quantitative results for Siamese KPConv and M3C2
methods for change detection and categorization. Acc. stands

for accumulation.

(a)

(b)
Unchanged Erosion
Accumulation No data to compare

Figure 4. Results on east part of the cliffs between 2017 and
2018 acquisition. Points of the ground truth (a) and in Siamese

KPConv results (b) are colorized according to the change.

5. DISCUSSION

5.1 Comparison with M3C2 results

In Table 4, a comparison with the distance-based method M3C2
is made. To distinguish between types of changes, a threshold
is applied on this distance. According to Table 4, even if quant-
itative results for unchanged and erosion classes are higher for
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Figure 3. Siamese KPConv network architecture (de Gélis et al., 2021).

to categorize surface changes, this allows to compare Siamese
KPConv quantitative results to another method, it is discussed
in Section 5.1.

4.1.3 Metrics Finally, in order to provide quantitative as-
sessment, we measure the Intersection over Union (IoU) for
each classes as well as the mean IoU (mIoU). The IoU is given
by the following equation:

IoU =
TP

TP + FP + FN
(1)

where TP, TN, FP and FN respectively stand for True Positive,
True Negative, False Positive and False Negative.

4.2 Qualitative and quantitative results

Qualitative results are presented in Figures 4, 5 and 6 corres-
ponding to each part of the testing dataset. As we can see, the
predictions provided by Siamese KPConv prediction are close
to the ground truth. Erosion great structures are well recog-
nized, and even smaller parts of erosion seem to be highlighted
as it can be seen on the right side of Figure 5. Quantitative res-
ults are shown in Table 4. We report results for the three classes
of interest: unchanged, erosion and accumulation. We remind
that the class “no data to compare” is not a class of change and
is a bit subjective as it depends on annotator confidence in ex-
isting surrounding points in an area. In particular, per class IoU
indicates that unchanged area and erosion are mainly well clas-
sified as already shown on qualitative results. Main differences
with the ground truth appear at boundaries of erosion parts and
in some more intricate areas like in the top middle left side of
the Figure 5 where erosion, unchanged and “no data to com-
pare” classes are almost mixed up and cliff structure is more
complex. Accumulation class obtains a lower score in compar-
ison to erosion, surely explained by the only few accumulation
examples available in the whole dataset. Indeed training set
contains only 1.51 % of points for accumulation whereas the
erosion represents 33.83 % of points. Worth noting that testing
set follows the same trend (see Figure 4(a), 5(a) and 6(a)). How-
ever, and as shown in Figure 4, it remains quite well retrieved.
Main confusions for this class appear also at the boundary of
accumulation zone and in “no data to compare” areas where
there are some isolated points predicted as accumulation.
Concerning the “no data to compare” class, main parts classi-
fied as “no data to compare” in the ground truth are also clas-
sified like this by Siamese KPConv. However there seem to be
more areas identified as “no data to compare” by the network.
Indeed, in some parts, only a few points allow the annotator to

be sure that there is or not a change whereas in some other parts,
the identification of change is trickier, or even impossible, so it
has been marked as “no data to compare”. Thereby, ground
truth and prediction should not be strictly compared. Finally, in
Table 4 we also report the mean of IoU over classes of interest
(mIoUint) so the mIoU without the subjective “no data to com-
pare” class.

Per class IoU(%)
Unchanged Erosion Acc. mIoUint

Siam. KPConv 91.94 83.86 70.28 82.03
M3C2 + threshold 95.06 87.23 48.20 68.12

Table 4. Quantitative results for Siamese KPConv and M3C2
methods for change detection and categorization. Acc. stands

for accumulation.
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Figure 4. Results on east part of the cliffs between 2017 and
2018 acquisition. Points of the ground truth (a) and in Siamese

KPConv results (b) are colorized according to the change.

5. DISCUSSION

5.1 Comparison with M3C2 results

In Table 4, a comparison with the distance-based method M3C2
is made. To distinguish between types of changes, a threshold
is applied on this distance. According to Table 4, even if quant-
itative results for unchanged and erosion classes are higher for
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LANDSLIDES

Collaboration with geomorphologists in Rennes
No need for prior vegetation masking
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Fig. 1. Kaikōura study area: (a) regional map of the regional context and location of the study area near Kaikōura (Figure
from [7]); (b-c) pre- and post-earthquake ALS acquisitions colorized as function of the split for our deep learning experiments.

2. DATA AND STUDY AREA

We focus on the Kaikōura region in New-Zealand where se-
vere topographic modifications have been sensed following
the magnitude Mw 7.8 earthquake of 14 November 2016 (see
Figure 1a). Following this extreme event, around 30,000
landslides over a 10,000 km2 were detected [12]. Two aerial
LiDAR acquisitions were realized with 2 years and 8 months
difference before and after the earthquake. Acquisitions have
an average ground point density of 3.8 ± 2.1 and 11.5 ± 6.8
points/m2 respectively.

A semi-automatic workflow called 3D point cloud dif-
ferencing (3D-PcD) for the detection of landslide sources
and deposits from multi-temporal airborne LiDAR data has
been introduced in [7]. This method is based on the Multi-
Scale Model-to-Model Cloud Comparison (M3C2) algorithm
[13] and on a two-step approach to filter out false detections
that can emerge due to vegetation classification errors and
geometrical inaccuracies: i) using significant topographic
changes (provided by M3C2 algorithm) and ii) exploiting
a patch-based metric to detect remaining false detections.
Thereby, the ground truth has been obtained by a combina-
tion of 3D-PcD [7], vegetation filtering (to prevent from the
detection of inaccurate changes), and manual visual analysis
for label refinement. This labelisation is used as ground truth
to train the network in the following experiments.

Taking the 5 km2 area where landslide sources and de-
posits were retrieved in [7], we selected three non-overlapping
areas to constitute our training, validation and testing sets.
These three splits are depicted in Figure 1(b,c). Unlike [7],
our network is fed with raw 3D PCs without any filtering of
vegetation. It is trained to highlight sources and deposit areas
in a single prediction step.

Fig. 2. Encoder Fusion SiamKPConv network [10].

3. METHODOLOGY

Encoder Fusion SiamKPConv
In this study, we propose to use the latest deep learning meth-
ods in order to detect landslides. In particular, we rely on
Encoder Fusion SiamKPConv deep network [10]. As visible
in Figure 2, the network is composed of two encoders to ex-
tract features from both input PCs. However, the encoder of
the second PC (at the bottom of Figure 2) also fuses change
information (given by the nearest point feature difference –→)
at each different layer of the encoder. This concatenation op-
eration allows the network to focus more on change-related
features extraction. In the decoder part, some skip links are
used from the output of the concatenation and the correspond-
ing decoding layer. As for Siamese KPConv network, to deal
with 3D PCs without any rasterization, these networks rely
on 3D Kernel Point Convolution (KPConv) [14]. Thus, in this
work, we reuse the model described above, which we train
from scratch on our ground truth made of landslides sources,
deposits and unchanged areas.
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Table 1. Results on Kaikōura landslide detection dataset given in %. mAcc is the mean Accuracy, IoU is the Intersection over
Union and mIoU is the mean IoU.

mAcc mIoU Per class IoU (%)
Method (%) (%) Unchanged Source Deposit

Encoder Fusion SiamKPConv 93.87 83.84 93.58 74.38 83.57

(a) Pre-earthquake (b) Post-earthquake (c) Ground truth

(d) Zoom in the ground truth (e) Zoom in the prediction (f) Siamese KPConv prediction

Source Deposit

Fig. 3. Qualitative results of Encoder Fusion SiamKPConv deep network prediction of landslides sources and deposits in the
testing area. Pre- (a) and post-earthquake (b) input PCs are shown along with the ground truth in (c). The resulting sources and
deposits prediction is visible in (f). Zooms in the PCs of the ground truth (d) and the prediction (e) are also presented.
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Fig. 3. Qualitative results of Encoder Fusion SiamKPConv deep network prediction of landslides sources and deposits in the
testing area. Pre- (a) and post-earthquake (b) input PCs are shown along with the ground truth in (c). The resulting sources and
deposits prediction is visible in (f). Zooms in the PCs of the ground truth (d) and the prediction (e) are also presented.
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WHEN DEEP LEARNING MEETS POINT CLOUDS AND CHANGE DETECTION

Lessons learnt from the PhD thesis of Iris de Gélis
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CONTRIBUTIONS

An example of a prolific thesis, awarded by French Pattern Recognition Society

1. State-of-the-art (comparative review) + synthetic/real datasets (IGARSS21+RS21)

2. Siamese KPConv, first deep method for PC change detection (ISPRS21+P&RS23)

3. Strategies to better embed/learn the change information (TGRS24)

4. Countering supervision through SSL (mobility at TUM) (OJPRS23)

5. Countering supervision through unsupervised learning with DC3DCD (P&RS23)

6. Applications on cliffs (ISPRS22) and landslides (IGARSS24) through collaboration 

with other researchers
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PERSPECTIVES

The initial PhD topic was deep learning on PC time series

If the study was to be restarted today:
• Less supervision: foundation models?
• Efficiency (green AI)
• XAI



4242

LESSONS LEARNT

1. No dataset: build your own! (possibly by adapting some existing ones)

2. Keep an eye on the literature (the field is evolving fast)

3. Don’t reinvent the wheel (numerous methods with codes are available, 

but their use can be time-consuming)

4. Publish your code for impactful research 

(and helping not reinventing the wheel)

5. Consider a doctoral mobility!

Thanks for listening… and thanks to Iris!


